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A B S T R A C T

The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for
conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable
development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD fra-
mework has far-reaching consequences- it will guide conservation actions and reporting for each member country
until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators
for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem
function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global con-
servation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be
conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al.,
2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current in-
dicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical
use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the
proportion of populations maintained within species, 3) the number of species and populations in which genetic
diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020
biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators
and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via
national and global policy for decades to come.

1. Introduction

Genetic diversity is the basis for evolutionary change, and is critical for
species to adapt to changing climate, habitats, and biotic interactions in-
cluding novel diseases. Low genetic diversity will increase extinction risk
(Spielman et al. 2004). There is also abundant evidence for the substantial
role of genetic diversity in ecosystem resilience, and for maintaining
species diversity (Clark, 2010; Morikawa and Palumbi, 2019; Prieto et al.,
2015; Reusch et al., 2005). Genetic diversity helps to maintain ecosystem
functions, stability and services, and has similar impacts on community
structure and ecosystem processes as species diversity (Blanchet et al.,
2020; Prieto et al., 2015, Raffard et al. 2019). Moreover, large social,
economic and cultural losses can result from using narrow genetic stocks
in forestry, fisheries, horticulture, and agriculture (Doyle, 2016; Ploetz,
2015; Wu, 2019). Genetic diversity has been assessed for thousands of
species, and meta-analyses of hundreds of datasets show that genetic di-
versity is decreasing, especially since the industrial revolution, because of
habitat degradation and population loss, unsustainable harvest, invasive
species and increasing extreme climatic events (Aguilar et al., 2008; Leigh
et al., 2019; Miraldo et al., 2016; Pinsky and Palumbi, 2014).

Genetic diversity is recognized as one of three basic elements of bio-
diversity under the Convention on Biological Diversity (CBD; www.cbd.
int), an international treaty under the United Nations Environmental
Programme (UNEP) opened at the Earth Summit in Rio de Janeiro in 1992
and currently ratified by 195 states, plus the European Union. In 2010, the
CBD adopted a Strategic Plan (Convention on Biological Diversity, 2010a)
for the period 2011–2020 that included 20 targets to be achieved by 2020
(i.e. the Aichi Targets), though few targets have been met (Erdelen, 2020;
IPBES, 2019; Tittensor et al., 2014). At the 15th meeting of the Conference
of the Parties (COP 15) currently planned for October 2020, the CBD will
decide on a “post-2020” framework for biodiversity conservation and will
set new conservation targets at a critical period for the planet and society.
The strategy will have intermediate goals to halt loss of biodiversity and
ecosystem integrity by 2030 and ensure ecosystem resilience with a vision
for “living in harmony with nature” by 2050. Genetic diversity is also
recognized under other international agreements including Target 2.5 of
the Sustainable Development Goals (SDGs), Targets 5 and 9 of the Global
Strategy for Plant Conservation (GSPC), USA and Canadian endangered
species legislation, numerous EU policies including the Habitats Directive
and EU Biodiversity Strategy and Action Plans, and other regional

Glossary

Adaptation Evolution via natural selection as environmental condi-
tions change.

Allele A variant in DNA sequence at a given gene; a common way
to measure “genetic diversity”

Census size (Nc) Usually, a count of the number of adult or mature
individuals in a population.

Effective population size (Ne) An estimate of the genetic population
size that is inversely proportional to the rate of genetic
erosion; smaller Ne causes greater inbreeding and loss of
genetic diversity. This relationship is non-linear: genetic
diversity loss accelerates as Ne declines, and is especially
rapid in very small populations. Ne is influenced by many
demographic factors (see Box 2).

Genetic connectivity Movement of individuals or gametes (e.g., via
pollen) betwen populations i.e. “gene flow”.

Heterozygosity A measure of evenness; another common way to

measure “genetic diversity”.
Hybridization Mating between individuals of different species; “in-

trogression” is the movement of genes or alleles from one
species into another through repeated backcrossing of
hybrids to a parent species.

InbreedingMating among relatives, e.g., siblings.
Inbreeding depression Loss of fitness (growth rate, lifespan, re-

productive output) due to inbreeding and accumulation of
genetic load, primarily recessive deleterious alleles.

PopulationA group of interbreeding individuals in a defined area,
genetically distinct from other such groups. Note this is
not equivalent to “population” used by the IUCN, who
define “population size” as the total adult census of a
taxon at the global level. Most species have multiple po-
pulations. Population genomic analyses or phenotypic/
functional trait variation can be used to delineate popu-
lations (Funk et al., 2012).
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environmental policies such as the Biodiversity Action Plans for Fisheries
and Agriculture (Santamaria and Mendez 2012) and Baltic Sea Action Plan
(HELCOM 2007).

The first draft for the post-2020 strategy - the zero draft - was re-
leased in January (Convention on Biological Diversity, 2020). It calls
for ambitious and transformative change. It suggests five Goals focusing
on maintaining the three levels of biodiversity recognized in the CBD:
(1) ecosystems, (2) species, (3) genetic diversity, and on ensuring (4)
sustainable benefits to people, and (5) equitable sharing of benefits
from use of biodiversity and traditional knowledge.

The inclusion of genetic diversity as a primary Goal (a higher level
than the Action Targets) hopefully reflects increasing recognition of the
role of genetic biodiversity for ecological and economic resilience.
Moreover, the draft genetic diversity Goal does not focus specifically on
domesticated and socio-economically or culturally important species, as
the previous 2010 and 2020 CBD targets did (see below). This is an
important and positive development. Genetic erosion occurs via similar
processes in wild and domesticated species [e.g. inbreeding, genetically
small effective population size (Ne), and loss of distinct variants, breeds
or populations]. This shift could promote monitoring and conservation
actions to preserve genetic diversity within many wild species in situ
and ex situ, help close the gap between conservation actions directed at
ecosystems and species with those at the genetic level, and increase the
focus on genetic diversity in national and subnational policies.

However, the zero draft's Goal for genetic diversity is weak and unclear
(Laikre et al., 2020). There is no 2030 Action Target for genetic diversity. The
suggested elements for monitoring, including proposed indicators of genetic
change (number of threatened breeds, size of seed banks, and conservation of
crop wild relatives), remain restricted to the genetic diversity of agricultural
species and their wild relatives, as in the current Aichi Target 13 on genetic
diversity. The SDGs and the GSPC also have a strong focus on agriculture.
Domesticated species make up a fraction of 1% of all species (Gaut et al.,
2018). Such focus neglects non-domesticated species that underpin func-
tional ecosystems and provide ecosystem services, especially under climate
and environmental change (Prieto et al., 2015). Indicators only for do-
mesticated species are also contrary to the vision of the CBD “to ensure
that this diversity continues to maintain the life support systems of the
biosphere” (Convention on Biological Diversity, 2001).

In the context of the important biodiversity policy development that
the CBD post-2020 framework represents, and recognizing that timely
provision of expertise can inform and guide policy and management,
this article contains the following Sections:

2. Emphasis of the importance of maintaining genetic diversity within
all species

3. A historical review genetic diversity within the context of the CBD
4. Discussion of shortcomings of genetic indicators proposed by the
CBD

Box 1
Clarifying key genetic terms in global biodiversity policy.

Clear terminology is important for designing indicators, and for reporting on status and trends of biodiversity. Here and in the Glossary we
suggest definitions for key phrases used by the CBD; we hope such suggestions can be included in a CBD “glossary of key terms and concepts”
(e.g. CBD/COP/DEC/14/1).

“Genetic diversity” is the diversity within species which allows species to adapt. A similar term, “genetic resources,” has been used to refer
to “genetic material”, usually from wild or semi-domesticated populations, with “actual or potential economic, environmental, scientific or
societal value.” This may include genes, genetic variants or genetic complexes controlling traits. It is used primarily in agriculture, medicine,
horticulture, fisheries, and forestry (Food and Agriculture Organization of the United Nations, 2014; Harlan, 1975). However, all genetic
diversity is a resource for ecosystems, species and populations, regardless of the direct or indirect benefit to humans. Sometimes “genetic
resources” is used to refer to the number of wild relative species of domesticated plants and animals, although technically this would be a
component of “species diversity”. “Phylogenetic diversity” refers to measures of evolutionary distance, most often among species and higher
levels (e.g. measuring the phylogenetic diversity of a seed bank, (Griffiths et al., 2015). Although all three concepts (genetic diversity, phy-
logenetic diversity and genetic resources) are important to biological conservation, the 2010 and 2020 targets for the CBD are most consistent
with “genetic diversity within species”.

In conservation literature “genetic erosion” usually refers to one or more of: loss of alleles (gene variants), decrease in heterozygosity; loss
of distinct populations or significant conservation units; or altered gene flow, usually measured with genetic data (Hoban et al., 2014; Ouborg
et al., 1991; Rubidge et al., 2012). In agricultural literature, genetic erosion often refers to loss or endangerment of varieties/landraces/breeds
or traits/phenotypes (Hammer and Laghetti, 2005). In both wild and domesticated species, genetic erosion may also be presumed when high
inbreeding or low effective population size (Ne) is observed. Note that the loss of entire species of wild relatives (species closely related to
domesticated crops and livestock) is sometimes referred to as genetic erosion, but this is loss of species diversity, not genetic diversity. To help
achieve clarity, we propose a comprehensive definition of genetic erosion applicable to both domesticated and wild species, which is connected
to our proposed Action Target (Fig. 1). Genetic erosion is the:

• “loss of genetic diversity (e.g. evolutionary potential), lineages, traits, populations or metapopulations, breeds, varieties, landraces or similar, in situ or
ex situ; and/or
• the disruption of processes maintaining genetic resilience such as genetic connectivity; and/or• high levels of hybridization; and/or• other threats to genetic diversity such as high inbreeding”.
We propose that the phrase, “to prevent genetic erosion” is approximately synonymous with “genetic diversity is maintained.”
“Safeguarding genetic diversity” may refer to in situ protection (e.g., via well-managed protected areas) or ex situ protection (e.g., seed,

sperm, eggs, tissue, or living organisms taken from the wild and kept in large, well-documented, managed populations) of a sufficient,
representative amount of genetic diversity from a species' geographic range including genetically distinct populations and the full range of
environmental heterogeneity (Guerrant et al., 2014). Safeguarding may also include other complementary, non-mutually exclusive actions
essential for conserving genetic diversity, such as genetic diversity assessments, supporting genetic exchange among populations, breeding
programs, research, etc. We therefore propose to define safeguarding genetic diversity as “actions performed in situ or ex situ which are designed to
characterize, slow, halt or reverse genetic erosion (see above), and promote the processes ensuring adaptive potential”. To accomplish effective
safeguarding will require increased knowledge on best care and curation of ex situ collections; and integration of genetic diversity concepts
into the management of protected areas in situ. For example, recently updated guidance for Key Biodiversity Areas (IUCN, 2016) and Fa-
vourable Reference Populations (DG Environment 2017) under the European Union Habitats Directive (Council Directive 92/43/EEC) includes
recommendations on “genetic viability”, while the EUFORGEN program tracks detailed data on in situ protected gene conservation units in
forest trees (euforgen.org).
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5. Expanded details on recently suggested genetic indicators (Laikre
et al., 2020) to assess progress towards global conservation targets,
along with data sources

6. Suggested post-2020 Goal and Action Target for genetic diversity,
connected to indicators and data sources

7. Closing recommendations including suggested next steps for im-
plementation, and future indicators

We also provide clarification of key genetic terms used in global
conservation policy (Box 1 and Glossary). We hope to promote science-
based discussion during the revision of the framework, and provide a
reference for future testing and implementing indicators, and reporting
on progress. We also aim to motivate and provide entry points for
scientists and policy makers to engage each other for science-driven
policy on the conservation of genetic diversity.

2. Emphasis of the importance of genetic diversity within all species

Although Aichi Target 13, and Target 9 of the GSPC, state “and other
socio-economically important species,” and the Technical Rationale (https://
www.cbd.int/sp/targets/rationale/target-13/) for Target 13 recommends
including “selected wild species of plants and animals”, genetic indicators
have long focused on domesticated species, which can limit the types of
species and actions that countries include in CBD National Reports (Hoban
et al. unpublished data). Many species that are not domesticated have high
economic, ecosystem function, or cultural relevance. Economically im-
portant species include wild harvested plants that provide timber, non-
timber forest products, herbs and medicines; hunted or gathered animals;
and horticultural species (Hollingsworth et al., 2020). While >28,000
plant species have documented uses by humans (Royal Botanic Gardens,
2016), many others could yet prove useful, especially in a changing world.
Other species are important for tourism or as icons for raising conservation
funds (e.g., pandas, tigers, whales). Furthermore, many non-agricultural
species are culturally valued for arts and folklore, emblems, culturally
significant entities, or religious symbols (e.g., elephants, oak trees). The
genetic diversity of ecosystem engineers or keystone species (e.g., trees,
seagrasses, predators, pollinators, filter feeders, decomposers) supports
larger numbers of species (Clark, 2010) facilitates ecosystem stability, or
supports ecosystem functions including primary productivity, nutrients
and energy flows. Such functions are crucial for nature in addition to ul-
timately impacting human health and livelihoods (Hughes and
Stachowicz, 2009). Therefore, a sizable fraction of all species have

demonstrable social, cultural, economic, or ecological importance. Note
that ecosystem services are performed by co-evolved and interacting, in-
terdependent species, whose relationships vary over time as traits and
genes change. Recognizing these co-adaptations, and in the light of climate
change, it is wise to adopt a holistic biocentric approach relying on resi-
lience which ultimately depends on a broad base of genetic variation. In
summary, genetic diversity within species supports not only species' per-
sistence but also ecosystem integrity, adaptability and risk reduction.

Furthermore, monitoring a species subset based on socio-economic
importance is unlikely to be representative of most other species (cf.
Outhwaite et al., 2020). Therefore a post-2020 Goal should explicitly state
“genetic diversity within all species”, as recommended by the IUCN, So-
ciety for Conservation Biology, GEO BON, G-BiKE and others (see Table 1),
in order to truly achieve conservation of genetic biodiversity (Laikre et al.,
2020; Society for Conservation Biology, 2020; IUCN, 2020). Of course,
actual monitoring of genetic diversity (as with monitoring of species and
ecosystems) will encompass a science-based subset of taxa, including (but
not solely) ecologically, socioeconomically and culturally important spe-
cies across taxonomic groups. As one example, Hollingsworth et al. (2020)
demonstrate a pragmatic process for reporting on genetic diversity for a
subset of species.

3. A historical review of genetic diversity in the context of the CBD

In 1992, the Convention on Biological Diversity stated that biolo-
gical diversity consists of diversity “within species, between species and of
ecosystems”. An ambitious target to halt biodiversity loss was set for
2010, with a subtarget on genetic diversity (Convention on Biological
Diversity, 2001): “Genetic diversity of crops, livestock, and harvested
species of trees, fish and wildlife and other valuable species conserved,
and associated indigenous and local knowledge [is] maintained”. The
Global Biodiversity Outlook 2 (Convention on Biological Diversity,
2006), reflecting on target progress, stated that “Genetic variation is
important for maintaining fitness and adaptability of species, and of
direct importance for people through the maintenance of goods and
services.” This document also highlighted threats to genetic diversity
including overharvesting of wild species, anthropogenically-induced
hybridization, habitat fragmentation, selective hunting, and declines in
abundance- which are still among the major threats recognized in
conservation genetics. The Outlook also noted that genetic diversity
was declining, that genetic diversity monitoring lagged behind species
monitoring, and that genetic diversity indicators were weak and needed

Table 1
Examples of knowledge sharing initiatives for conservation genetics. These activities emphasize the substantial ongoing work to link genetic diversity research, policy
and action.

Initiative Duration Webpage

Conserving Genetic Resources for Effective Species Survival 2010–2013 www.ConGRESSgenetics.eu
IUCN Conservation Planning Specialist Group (previously Conservation

Breeding Specialist Group)
1979-current https://www.cpsg.org/

IUCN Conservation Genetics Specialist Group 2015-current www.cgsg.uni-freiburg.de/
G-BiKE-Genetic Biodiversity Knowledge for Ecosystem Resilience COST

Action
2019-current sites.google.com/fmach.it/g-bike-genetics-eu/news

GEOBON (Group on Earth Observation Biodiversity Observation Network)
Genetic Composition Working Group

2018-current https://geobon.org/ebvs/working-groups/genetic-composition/

Association of Zoos and Aquaria working group “Molecular Data for
Population Advisory Group”

2016-current https://www.aza.org/molecular-data-for-population-management-scientific-advisory-
group

NCEAS/NESCent Working Group on Genetic Monitoring 2008–2009 https://www.nceas.ucsb.edu/projects/12140
Global Genome Biodiversity Network (GGBN) 2011-current www.ggbn.org/ggbn_portal/
Wildlife Society Molecular Ecology Working Group 2016-current https://wildlife.org/mewg/
Baltic Sea Genetic Biodiversity (BaltGene) & Baltic Sea Marine Biodiversity

(BONUS Bambi)
2009–2017 https://bambi.gu.se/baltgene

Society for Conservation Biology Conservation Genetics Working Group 2016-current https://conbio.org/groups/working-groups/conservation-genetics-working-group/
CONGENOMICS - European Science Foundation - Research Network

Program
2011–2016 http://archives.esf.org/coordinating-research/research-networking-programmes/life-

earth-and-environmental-sciences-lee/current-esf-research-networking-programmes-in-
life-earth-and-environmental-sciences/conservation-genomics-amalgamation-of-
conservation-genetics-and-ecological-and-evolutionary-genomics-congenomics.html
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development - concerns also noted elsewhere (Bruford et al., 2017;
Convention on Biological Diversity, 2010b; Laikre, 2010).

Recognizing the failure to achieve the 2010 targets, the CBD set 20
Aichi Targets for 2010–2020 (Convention on Biological Diversity, 2010a),
including Aichi Target 13: “By 2020, the genetic diversity of cultivated
plants and farmed and domesticated animals and of wild relatives, in-
cluding other socio-economically as well as culturally valuable species, is
maintained, and strategies have been developed and implemented for
minimizing genetic erosion and safeguarding their genetic diversity.”
Meanwhile, the conservation genetics field blossomed with thousands of
studies (Pérez-Espona et al., 2017); technical and theoretical developments
(Allendorf et al., 2010); and numerous case studies where genetic in-
formation was fundamental to guide conservation assessments, planning,
actions, and legal protections (cf. Ogden et al., 2020; Van der Walt et al.,
2017). Important networking and knowledge sharing actions helped im-
prove the support of conservation decisions with genetic scientific
knowledge (Table 1). Unfortunately, despite these advancements, in-
dicators and technical guidance for genetic diversity at the CBD still re-
main insufficient (Laikre et al., 2020).

4. Discussion of shortcomings of genetic indicators proposed by
the CBD

An indicator is a simple “measure or metric based on verifiable data
that conveys information about more than itself” (BIP et al. 2011). The
paucity of currently used CBD genetic indicators and their weak correla-
tion to genetic change has repeatedly been noted in CBD documents
(Convention on Biological Diversity, 2010b, 2006). We discuss the re-
levance and shortcomings of four genetic diversity indicators (Table 2)
recommended by the CBD in the zero draft (CBD/WG2020/2/3/Add.1,
CBD, 2020), the first of which is also an indicator for the SDG and GSPC.

The first indicator is the “Number of plant genetic resources for food
and agriculture secured in medium or long-term conservation facilities”
(animal genetic resources were included in 2016 but not in 2020). In
practice this means the number of seed collections (i.e., accessions) kept in
seed banks. In theory, preserving more individuals or seeds ex situ should
preserve more genetic diversity. However, seed banks often do not suffi-
ciently safeguard genetic diversity because they often represent offspring
of only one population or a few individuals of an entire species (Beckman
et al., 2019; Maunder et al., 2001). As such, this indicator is only loosely
connected to genetic diversity preservation and may more closely relate to
conservation of number of species. In addition 10–20% of all plant species
(therefore about 35,000 species) cannot be kept in conventional seed
banks, many of them tropical (Walters et al., 2013). An improvement
would be to modify the current indicator with a clause specifying that
collections must be genetically representative (i.e. sampled across the
geographic range, typically at least 5 populations), resilient (i.e. large
samples, e.g. seeds from >50 plants per population), and replicated (i.e.
backed up in multiple locations (Hoban, 2019). This information is
available for many botanic gardens and seed banks.

Another CBD genetic diversity indicator is the “Proportion of local
breeds classified as being at risk, not at risk, or at unknown level of risk
of extinction” (threatened plant genetic resources was included in 2016
but not in 2020). While this indicator is not applicable to wild popu-
lations, endangered breeds of domestic species are comparable to en-
dangered distinct wild populations; populations are the wild equivalent
of breeds or plant varieties. The definition of threatened animal breeds
includes discussion of the effective population size needed to avoid loss
of genetic diversity (Hodges, 1992). Therefore, this indicator could be
subsumed within our proposed indicator number of populations whose
effective population size Ne is below 500 (i.e. at high genetic risk) as
compared to the number with Ne larger than 500 (thus genetically
“safe”; see Glossary and below for definition of Ne).

A third indicator is the “Comprehensiveness of conservation of so-
cioeconomically as well as culturally valuable species” (Khoury et al.,
2019). It quantifies a proportion of a species range that is represented
ex situ (held in seed banks) or in situ (within protected areas). (Addi-
tional indicators representing habitat quality and quantity were re-
commended in 2016 but not in 2020.) It is described as an indicator for
crop wild relatives but its methodology is equally applicable to any
species. In the absence of any knowledge of a species other than its
geographic occurrences, this is an effective indicator of genetic erosion
because on average, as geographic occurrence declines, populations and
their diversity are lost (Alsos et al., 2012; Wasserman et al., 2012). It
could be expanded to all species, with the caveats above regarding seed
bank effectiveness and the caveat that protected areas must have high
quality habitat, connectivity, and legal enforcement.

The final CBD genetic diversity indicator is the “Red List Index (species
used for food and medicine and wild relatives of domesticated animals)”,
which reflects changes in the number of species in Red List (RL) categories
(e.g. Endangered, Critically Endangered) based on updated assessments
and new knowledge. The IUCN evaluates criteria such as total species
census size, reductions in population size and/or geographic range, each of
which should theoretically correlate with losses of genetic diversity.
However, although genetic diversity is lower on average in threatened
species, RL categories are poor predictors of genetic erosion and a metric
based on effective population size and its influence on genetic erosion was
subsequently recommended (Willoughby et al., 2015). Additionally, RL
terminology considers “population size” as the total number of adults of
the taxon (globally), and does not address genetically distinct populations
within taxa, where genetic erosion primarily occurs. Moreover, for many
taxa, RL thresholds will not meet the census size, or Nc, required for a
genetic effective size of Ne> 500, even at the species level (see Glossary
and below for definitions of Nc and Ne). For example, to be listed under
the RL criterion D (very small or restricted population), the total Nc must
be <1000 for Vulnerable, <250 for Endangered, <50 for Critically En-
dangered (IUCN, 2019). While in some cases the original data used for the
assessments of the Red List (e.g. number of populations, size of popula-
tions) could help calculate the genetic indicators we propose below, the
Red List Index itself does not suffice as a genetic indicator.

Table 2
Summary of weaknesses of zero draft indicators (from CBD document “Preliminary draft monitoring framework” CBD/WG2020/2/3/Add.1) and proposed changes.

CBD Indicator Rationale Limitation Proposed changes

“Number of plant genetic resources …
secured…”

Larger number of seed collections in storage
facilities might conserve more genetic
diversity

More seeds does not
necessarily mean more
genetic diversity

Include specification for “resilient,
representative and redundant”a

“Proportion of local breeds… at risk...” Breeds below a given Ne are likely losing
genetic diversity

Ignores wild species Subsume into our indicator 2 “Proportion of
distinct populations maintained within
species”

“Comprehensiveness of conservation for
socioeconomically and culturally valuable
species”

Percent of geographic range protected in situ
and ex situ should conserve genetic diversity
especially local adaptations

Ignores most wild species Must apply to “all species”. Complements our
indicator “Proportion of populations
maintained within species”

“Red List (RL) Index...” Change in RL categories may reflect
demographic and thus genetic change

Not well connected to
genetic diversity

Do not use as a genetic diversity indicator
(but RL assessment data can be useful)

a Definitions for resilient, representative and redundant are provided in Section 3.
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5. New genetic indicators to assess progress towards global
conservation targets

The Biodiversity Indicators Partnership, which supports CBD in-
dicator development, recently stated, “it is still possible to identify
datasets and indicators of which we were previously unaware, and
there is often ongoing work that, with minimal support, could provide a
new and innovative indicator for use” (http://www.bipindicators.net).
We explain here three genetic diversity indicators (elaborating from
Laikre et al., 2020), all of which are essentially counts of populations or
species meeting a criteria and can be applied to wild or domesticated
species, in situ or ex situ (Fig. 1).

(1) Number of populations within species with effective population size (Ne)
above 500 versus those with Ne below 500: A principal component of
genetic diversity change is the genetic effective size (Ne) of popu-
lations, which determines rates of inbreeding, loss of genetic var-
iation, and loss of adaptive potential. Ne is a theoretical concept
with important practical value; Ne has well established thresholds
regarding genetic erosion: Effective population sizes lower than 500
(Jamieson and Allendorf, 2012) will result in reduced ability to
adapt to environmental change (some advocate a Ne threshold of
1000; Frankham et al., 2014). This threshold of Ne for preventing
genetic erosion applies to all organisms' populations regardless of
species' commonness, organism size, and life history characteristics;
below this threshold adaptive genetic diversity cannot be main-
tained and random fluctuations in gene variants may overwhelm
normal levels of natural selection. However we acknowledge that

some species' populations have historically maintained Ne in the
hundreds of thousands (e.g. tree species, Brown et al. 2004) and
that higher Ne helps maintain more alleles and higher genetic di-
versity.

We suggest applying the Ne> 500 threshold to genetically distinct
populations or to distinct, functional metapopulations (a set of local
populations which exchange multiple migrant(s) each generation) to
identify risk of genetic erosion. For continuously distributed species,
populations may be defined by ecoregions, genetic data, seed zones or
other delineations, depending on the species. Unless populations are
nearly isolated (very low migration) or the metapopulation structure is
well known, Ne estimates from molecular data can be hard to interpret.
This indicator monitors the number of distinct (meta)populations
whose current known or estimated Ne is below vs. above 500, re-
presenting loss of adaptive potential. We also note that Ne lower than
50 is a more extreme situation requiring immediate action to prevent
rapid, harmful increases in inbreeding, decline in fitness and re-
productive output, and very rapid loss of diversity. Note that these
thresholds are minimum guidelines for risk assessment; Ne above a
threshold doesn't necessarily mean that conservation intervention is no
longer required nor does Ne below a threshold signify lost hope for
recovery.

Ne can be assessed in several ways (details in Box 2). Ne can be
calculated using freely available software if a pedigree is available, as
with captively bred, closely monitored or domesticated species (Lacy
et al., 2012). Ne can also be calculated from demographic data e.g. life
history characters and demography for the focal or a related species

Fig. 1. New Goal, Action Target and indicators (including sources of data for those indicators) proposed for the CBD post-2020 biodiversity framework for efficient
conservation of genetic diversity of all species.
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(Palstra and Fraser, 2012; Waples et al., 2011) or with molecular ge-
netic data (Do et al., 2014; Wang et al., 2016). In the absence of such
knowledge, Ne can be roughly approximated using the estimated census
size of a population (Nc, census size, typically the number of adult in-
dividuals) multiplied by 0.1. The approximate value 0.1 has been ob-
served as mean and/or median in scientific reviews of Ne/Nc ratios in
animal and plant populations (Frankham, 1995; Ruzzante and Palstra,
2008), and implies that Nc of 5000, in the absence of other data, may be
assumed to have an Ne of 500, on average.

Ne/Nc varies among species primarily due to their demographic and
life history traits (Frankham, 1995; Palstra and Fraser, 2012; Palstra
and Ruzzante, 2008; Wang et al., 2016), see Box 2. We include a
compendium of Ne/Nc values from previous reviews plus 35 additional
studies in Supplemental Tables 1 and 2 and Fig. S1. Clearly, variation is
large, but for some populations and species robust estimates are
available, and with increasing genetic monitoring efforts, knowledge is
rapidly accumulating and estimation techniques are improving (Ryman
et al., 2019).

We emphasize that use of the Ne/Nc ratio (e.g. 0.1) in the absence of
robust genetic or demographic assessments, is for most species con-
sistent with the precautionary principle. Box 2 illustrates caveats to the
Ne/Nc approach, including how the ratio may be estimated at local
population versus at metapopulation levels. Despite some caveats, Ne is
one of the most important parameters for halting genetic erosion and
maintaining adaptive potential and we recommend its use in most si-
tuations, particularly when each population is fairly discrete with low
gene flow, when populations are continuous with high gene flow (one
population), or when information on the metapopulation structure is
available. When calculated across numerous species, this indicator
should be a powerful assessment of genetic erosion in which bounds of

uncertainty (see Box 2) emphasize optimistic and pessimistic scenarios
(and acknowledge gaps in our knowledge).

(2) The proportion of distinct populations maintained within species:
Another accessible indicator is the number of genetically distinct
populations, relative to some baseline, preferably from historic re-
cords. The loss of distinct wild populations, or the agricultural
equivalent - breeds, landraces, or varieties - will result in large
losses of genetic diversity within species (Alsos et al., 2012),
especially the loss of local adaptations. Conservation's historic focus
on species extinctions has neglected the loss of diversity as species'
ranges shrink and millions of populations disappear (Ceballos et al.,
2017). The loss of distinct populations could be calculated from
IUCN Red List data, historic Global Biodiversity Information Fa-
cility (GBIF) occurrences, or data underlying the Living Planet
Index. The question arises, what is a population? While populations
are often geographically distinct (e.g. a wetland, a forest patch), in
many cases they are not (see caveat above for Ne). Genetic data can
reveal population boundaries (Waples and Gaggiotti 2006), though
observed genetic differences should be interpreted carefully to
avoid misinterpretation. For example, recent population decline
and/or cessation of gene flow can lead to observed population
differentiation that is only very recent. Moreover, high resolution
genomic datasets may detect very small population divergence with
little conservation significance. Nonetheless, such low divergence
can still reflect local adaptation (e.g., Hill et al., 2019). Alter-
natively, a percentage of the species' historic range which is
maintained would suffice, which could be calculated in an auto-
mated procedure similar to the “comprehensiveness” indicator, e.g.
using occurrence records.

Box 2
Challenges with Ne and the Ne/Nc ratio, including an example for the pool frog (Pelophylax lessonae).

Several challenges to assessing Ne are worth enumerating. Ne is determined by fluctuation in population size, variance in number of offspring
among individuals, unequal sex ratio, overlapping generations (Frankham, 1995; Waples, 2002). Further, several different effective population
sizes have been defined relating to different types of genetic change including inbreeding effective size, variance effective size, and linkage
disequilibrium effective size. In isolated populations these Ne are the same but in non-isolated populations they may differ considerably
(Hössjer et al. 2016; Ryman et al., 2019). In addition, assessments in natural populations show that Ne/Nc ratios may vary greatly among and
within taxonomic groups due to factors like gene flow, metapopulation structure and population turnover (Frankham, 1995; Palstra and
Ruzzante, 2008; Palstra and Fraser, 2012). We have compiled Ne/Nc estimates from previous reviews and this study (Tables S1 and S2) and
illustrate the variation in Fig. S1. In general, species characterized by type III survivorship curves (high juvenile mortality and high fecundity)
and high variance in reproductive success such as many marine fish or planktonic copepods, displayed much lower Ne/Nc ratios than other
groups [e.g., median ratio of 2.67 × 10−4 for bony marine fish species; Tables S1–2]. The ratio Ne/Nc is also much lower when interannual
census population size (Nc) varies (Frankham, 1995). The ratio tends to be slightly higher than 0.1 in large mammals and birds, and lower in
marine fish. Additional compilation of Ne values across many taxa will help refine the range of Ne/Nc by taxonomic group and allow better
operationalisation of Ne in this indicator; this will be enabled by increasing affordability and accessibility of genetic data analysis (and clear
reporting in publications).

Even within species, the Ne/Nc ratio may vary over geographic and spatial scales. For example, it is important to note whether Ne/Nc is of a
local subpopulation or of the whole metapopulation. Sjögren (1991) quantified Ne for a generation of pool frogs using detailed demographic
data of a local population, and also using Maruyama and Kimura's (1980) Ne-meta model to estimate long-term Ne per generation at the
metapopulation level. Local Ne was either 59 (reproduction was normal all years) or 35 (reproduction was poor in 2 out of 5 years). The
number of adults during the full generation was 327, and the annual estimates of the number of adults (Nc) ranged from 79 to 204 (Sjögren,
1991)). Therefore within this local population, Ne/Nc was from 0.107 to 0.180 if Nc is calculated over the entire generation, while according to
annual Nc, it varied from 0.289 to 0.366 during years with normal reproduction and from 0.357 to 0.443 during years with poor reproduction.

When populations are substructured, the metapopulation effective size (Ne-meta) and local subpopulation effective sizes are of interest and
can be assessed (Gomez-Uchida et al. 2013; Maruyama and Kimura, 1980). Ne-meta can be larger or smaller than the raw sum of the Ne per
sub-population due to factors like gene flow and metapopulation structure (Palstra & Ruzzante 2011; Paz-Vinas et al. 2013; Hössjer et al. 2016;
Marzo et al. 2020) and the type of Ne considered (Ryman et al., 2019). In the pool frog, at the metapopulation level, with 30 local populations
in a metapopulation and using the Maruyama and Kimura (1980), Ne/Nc was 0.078. VORTEX modeling (Lacy and Pollak, 2017) of 16 of these
30 local populations with data from Sjögren (1988, 1991) indicated that observed heterozygosity during 100 years declined with a rate
corresponding to a Ne/Nc= 0.086. In conclusion, metapopulation dynamics and the method used to calculate Ne will influence the Ne/Nc estimate.
Few studies have this amount of detail or are conducted over sufficient time frames (full generations). In this pool frog case, Ne/Nc varied
between 0.11 and 0.44 at the local population level, and was lower (0.08–0.09) at the metapopulation level. If no data had been available on
this species, the conservative estimate of 0.1 for Ne/Nc seems reasonable. When employed as an indicator, reporting of Ne should detail the
method(s) used (e.g. pedigree, genetic (and which estimator), demographic, “rule of thumb”, and any assumptions), and the range of values
from different methods. More Ne estimation in natural populations is needed, particularly in metapopulations. With increased monitoring of genetic
diversity (Indicator 3) such information can be generated within the CBD post-2020 biodiversity framework.
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This indicator is challenged by the prospect of species' range shifts
under climate change. It is possible in theory but unlikely in reality for
populations to perfectly track climate (i.e. all populations shift with no
gain or loss of populations and genetic composition is unchanged). The
most likely scenario is loss of trailing-edge populations (i.e. loss of some
populations) either with or without a leading-edge shift. Theory and
data suggest that new leading-edge populations will be limited by
competition, dispersal limits, and other ecological factors. Moreover,
newly colonized leading-edge locations cannot make up for losses on
the trailing-edge, likely resulting in overall genetic erosion. Another
scenario is more complex- some populations shift, migration patterns
change (with potential for genetic homogenisation), and populations
are lost and gained in various locations. In this case some aspects of
genetic diversity are maintained (possibly allelic richness), but other
aspects (e.g. genetic differentiation, local adaptations) may not. This
indicator would not fully capture such complex situations, nor would it
capture hybridization between species. This challenge emphasizes the
importance of monitoring genetic diversity and population boundaries
(indicator 3); one indicator alone is insufficient for monitoring progress
towards the CBD genetic diversity goal.

(3) Number of species and populations in which genetic diversity is being
monitored using DNA based methods: A further important aspect of
safeguarding genetic diversity, as noted above, is knowledge on
genetic diversity within and among populations (in situ and ex
situ), environmental drivers of that diversity, and degree of genetic
connectivity between subpopulations. Such knowledge is often used
to directly guide management for safeguarding genetic diversity,
such as clarifying taxonomic distinctiveness of rare species, asses-
sing current vs. historic genetic connectivity to inform transloca-
tions and restoration, optimal protected area design, informing
captive breeding, and identifying genetic consequences of stocking
or harvest (Bowman et al., 2016; Holliday et al., 2017; Koskela
et al., 2013). We thus propose an indicator as the number of po-
pulations of extant species whose within-species genetic diversity
(more than one individual and ideally multiple populations) has
been assessed in a publication or published in online databases and/
or where this data is used to inform conservation. An improvement
upon this, as genetic data accumulates (see Conclusion), will be to
focus on the number of species with routine monitoring of genetic
diversity to facilitate conservation action.

We consider this to be an informative and practical indicator but
recognise that it is a proxy for conservation genetic data observations
and knowledge rather than conservation genetic action (e.g. the re-
search-implementation gap, Taylor et al. 2017). This indicator could
also reflect increased laboratory capacity, or an increase in imperiled
species needing conservation efforts, and therefore cannot be relied on
in isolation. Data sources for this indicator could include journal arti-
cles, reports (cf. Bowman et al., 2016) and the number of species' po-
pulations with genetic datasets submitted to major repositories in-
cluding GenBank, EMBL-EBI, GEOME, Sequence Read Archive, Dryad,
FishBank, and CartograTree. The submission of genetic information in
such repositories in a coordinated, standardized fashion is still largely
lacking, a clear task for the groups in Table 1.

Concluding remarks on the three proposed indicators: These in-
dicators are applicable to all species, in situ and ex situ, and are
available immediately. Indicators 1 and 2 do not require genetic data.
They are each scalable- as essentially counts of populations meeting a
criteria they can be calculated locally, regionally or globally, and can be
aggregated across species and among different taxonomic groups.
Transnational collaboration will be useful for species that cross borders.
We identify examples of high-quality data sources for the indicators
(Fig. 1), though of course other data may be available. These indicators
are suitable for adoption in the post-2020 CBD framework.

6. Suggested post-2020 Goal and Action Target for genetic
diversity, connected to indicators and data sources

We identify a post-2020 genetic biodiversity Goal and Action Target
which is clearly connected to suitable indicators and to definitions of
terminology in Box 1 (Fig. 1). The revised Goal is more specific and
inclusive than that of the zero draft; clearly emphasizes all species;
emphasizes the near term (2030) outcome of stability (minimizing loss,
developing effective strategies and plans); and emphasizes the long
term (2050) outcome of maintaining adaptive capacity and resilience,
and restoring evolutionary processes in natural systems (e.g. large po-
pulations and migration). The timelines match other CBD Goals and
reflect feasibility- stabilization and forming strategies are achievable by
2030, while ensuring and restoring adaptive capacity will require re-
storing population connectivity, increasing population size, and in some
populations active management of adaptive potential, which will take
longer (2050, though in some species, those with short generation
times, the Goal can be achieved sooner).

Currently the zero draft has no Action Target leading to conserving
genetic diversity. To support a genetic goal, at least one genetic Action
Target is needed to emphasize the activities that must occur to achieve
the goal; actions supporting genetic diversity differ from those sup-
porting species, ecosystems, society etc. Our Target wording in Fig. 1
focuses on actions needed: assure large populations in situ and ex situ,
maintain all extant (meta-)populations and connectivity among popu-
lations, and monitor genetic diversity to guide local and regional con-
servation management. The indicators monitor that the actions are
carried out and are successful. All sections of Fig. 1 (Goal, Action
Target, Indicators) are needed and are aligned with the CBD zero draft
structure. To summarize, we underline the need to improve the genetic
Goal, to add an Action Target to assure that active work will occur, and
to use efficient indicators reflecting genetic diversity. These elements
could also form future targets for the SDGs and the GSPC.

7. Closing recommendations

For the post-2020 Global Biodiversity Framework Goal 3 of main-
taining genetic diversity, we have defined practical genetic diversity in-
dicators based on clear definitions and using available data, which un-
derpin a newly worded Goal and an Action Target. The three indicators are:

• The number of populations [or breeds] within species with an ef-
fective population size (Ne) above 500 compared to the number
below 500
• The proportion of populations [or geographic range] maintained
within species
• The number of species and populations in which genetic diversity is
being monitored using DNA based methods

We also propose modifications to current CBD indicators (additions
in italics):

• Comprehensiveness of conservation of all species
• Number of resilient, representative, and replicated plant genetic re-
sources secured in medium or long-term conservation facilities

We note that these two indicators alone are not sufficient. Rather,
they can be used as complementary to our three new indicators.

The following CBD indicators may be discontinued.

• “Proportion of local breeds classified as being at risk…” can be
subsumed into the new indicator on populations [or breeds] above
Ne 500
• “The Red List Index...” should not be used because it is not corre-
lated to genetic erosion and because it focuses on global census size,
not on size of distinct populations.
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We note that genetic data are increasingly available and affordable,
and government agencies and others are often able to monitor genetic
diversity directly, including using historic samples and models of his-
toric genetic diversity. Genomic technologies and analytical methods
are rapidly changing, with genome sequencers now the size and cost of
a smartphone, and analytical tools able to estimate gene flow and po-
pulation sizes many generations in the past. Within five to ten years,
additional indicators of genetic erosion based on large genetic datasets for
large numbers of species, with data or inferences reaching back hundreds of
years, are likely. In addition, genetic erosion can in some cases be in-
ferred by monitoring anthropogenic causative factors (e.g., deteriora-
tion of habitat, climate change), though the relationship between such
factors and genetic erosion is unknown for most species, is sometimes
non-linear, multifaceted, and time-lagged (Carvalho et al., 2019).
However, if the links between specific causal drivers and genetic ero-
sion are established (Wasserman et al., 2012), monitoring might focus
on the drivers directly without the need for genetic analysis; this is a
critical area of research. Similarly, linking critical thresholds for Ne to
minimum area requirements of suitable habitat could allow de-
termining if a population confined to a certain patch size is large enough
to maintain genetic diversity over time. The indicators we propose should
be supplemented as data accumulates and improves. Indicators could also
build on the concept of Essential Biodiversity Variables (EBVs), which
are summaries of complex biodiversity data (Navarro et al., 2017)-
genetic composition EBVs include allelic diversity, genetic differentia-
tion, and Ne.

Progress towards any indicator, including those noted above will
require and contribute to capacity-building (Convention on Biological
Diversity, 2020; Target 15) for documenting, curating, sharing, and
accessing regional and global databases on population demography and
genetic diversity information, especially in biodiverse regions. Cur-
rently, most collected genetic data (like most biodiversity data) is not
easily accessible or lacks sufficient meta-data (Convention on Biological
Diversity, 2010b; Pope et al., 2015), and thus cannot be used for
monitoring. This situation must change to safeguard genetic diversity.
Networks of practitioners (Table 1) must also help interpret and train
others to use genetic knowledge, contributing to the zero draft's Target
18: “Promote education and the generation, sharing and use of
knowledge relating to biodiversity… ensuring by 2030 that all decision
makers have access to reliable and up to date information for the ef-
fective management of biodiversity.” An additional advance would be
to add more genetic diversity definitions (Box 1 and Glossary) to gui-
dance documents for policy, including CBD Biodiversity Glossaries (e.g.
https://www.cbd.int/cepa/toolkit/2008/doc/CBD-Toolkit-Glossaries.
pdf). Looking forward, we envision a post-2020 framework that re-
cognizes that genetic diversity of all species contributes essentially to
supporting human society and the life support systems of the biosphere,
and which protects genetic diversity with clear, comprehensive, data-
informed policy.
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