50 research outputs found

    Large scale multiplex PCR improves pathogen detection by DNA microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA.</p> <p>Results</p> <p>To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR) for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000.</p> <p>Conclusion</p> <p>Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR.</p

    Multiplex primer prediction software for divergent targets

    Get PDF
    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (∼3700 18-mers or ∼2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus

    Molecular approaches to the diagnosis and monitoring of production diseases in pigs

    Get PDF
    Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs

    Identification and Characterization of Bacterial Pathogens Causing Bloodstream Infections by DNA Microarray

    No full text
    Bloodstream infections are potentially life-threatening and require rapid identification and antibiotic susceptibility testing of the causative pathogen in order to facilitate specific antimicrobial therapy. We developed a prototype DNA microarray for the identification and characterization of three important bacteremia-causing species: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The array consisted of 120 species-specific gene probes 200 to 800 bp in length that were amplified from recombinant plasmids. These probes represented genes encoding housekeeping proteins, virulence factors, and antibiotic resistance determinants. Evaluation with 42 clinical isolates, 3 reference strains, and 13 positive blood cultures revealed that the DNA microarray was highly specific in identifying S. aureus, E. coli, and P. aeruginosa strains and in discriminating them from closely related gram-positive and gram-negative bacterial strains also known to be etiological agents of bacteremia. We found a nearly perfect correlation between phenotypic antibiotic resistance determined by conventional susceptibility testing and genotypic antibiotic resistance by hybridization to the S. aureus resistance gene probes mecA (oxacillin-methicillin resistance), aacA-aphD (gentamicin resistance), ermA (erythromycin resistance), and blaZ (penicillin resistance) and the E. coli resistance gene probes bla(TEM-106) (penicillin resistance) and aacC2 (aminoglycoside resistance). Furthermore, antibiotic resistance and virulence gene probes permitted genotypic discrimination within a species. This novel DNA microarray demonstrates the feasibility of simultaneously identifying and characterizing bacteria in blood cultures without prior amplification of target DNA or preidentification of the pathogen

    Cost-Effectiveness Analysis of a Transparent Antimicrobial Dressing for Managing Central Venous and Arterial Catheters in Intensive Care Units

    No full text
    <div><p>Objective</p><p>To model the cost-effectiveness impact of routine use of an antimicrobial chlorhexidine gluconate-containing securement dressing compared to non-antimicrobial transparent dressings for the protection of central vascular lines in intensive care unit patients.</p><p>Design</p><p>This study uses a novel health economic model to estimate the cost-effectiveness of using the chlorhexidine gluconate dressing versus transparent dressings in a French intensive care unit scenario. The 30-day time non-homogeneous markovian model comprises eight health states. The probabilities of events derive from a multicentre (12 French intensive care units) randomized controlled trial. 1,000 Monte Carlo simulations of 1,000 patients per dressing strategy are used for probabilistic sensitivity analysis and 95% confidence intervals calculations. The outcome is the number of catheter-related bloodstream infections avoided. Costs of intensive care unit stay are based on a recent French multicentre study and the cost-effectiveness criterion is the cost per catheter-related bloodstream infections avoided. The incremental net monetary benefit per patient is also estimated.</p><p>Patients</p><p>1000 patients per group simulated based on the source randomized controlled trial involving 1,879 adults expected to require intravascular catheterization for 48 hours.</p><p>Intervention</p><p>Chlorhexidine Gluconate-containing securement dressing compared to non-antimicrobial transparent dressings.</p><p>Results</p><p>The chlorhexidine gluconate dressing prevents 11.8 infections /1,000 patients (95% confidence interval: [3.85; 19.64]) with a number needed to treat of 85 patients. The mean cost difference per patient of €141 is not statistically significant (95% confidence interval: [€-975; €1,258]). The incremental cost-effectiveness ratio is of €12,046 per catheter-related bloodstream infection prevented, and the incremental net monetary benefit per patient is of €344.88.</p><p>Conclusions</p><p>According to the base case scenario, the chlorhexidine gluconate dressing is more cost-effective than the reference dressing.</p><p>Trial Registration</p><p>This model is based on the data from the RCT registered with <a href="http://www.clinicaltrials.gov" target="_blank">www.clinicaltrials.gov</a> (<a href="https://clinicaltrials.gov/ct2/show/NCT01189682" target="_blank">NCT01189682</a>).</p></div
    corecore