38 research outputs found

    From clump to disc scales in W3 IRS4 A case study of the IRAM NOEMA large programme CORE

    Get PDF
    Context. High-mass star formation typically takes place in a crowded environment, with a higher likelihood of young forming stars affecting and being affected by their surroundings and neighbours, as well as links between different physical scales affecting the outcome. However, observational studies are often focused on either clump or disc scales exclusively. Aims. We explore the physical and chemical links between clump and disc scales in the high-mass star formation region W3 IRS4, a region that contains a number of different evolutionary phases in the high-mass star formation process, as a case-study for what can be achieved as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme named CORE: “Fragmentation and disc formation in high-mass star formation”. Methods. We present 1.4 mm continuum and molecular line observations with the IRAM NOEMA interferometer and 30 m telescope, which together probe spatial scales from ~0.3−20′′ (600−40 000 AU or 0.003−0.2 pc at 2 kpc, the distance to W3). As part of our analysis, we used XCLASS to constrain the temperature, column density, velocity, and line-width of the molecular emission lines. Results. The W3 IRS4 region includes a cold filament and cold cores, a massive young stellar object (MYSO) embedded in a hot core, and a more evolved ultra-compact (UC)H II region, with some degree of interaction between all components of the region that affects their evolution. A large velocity gradient is seen in the filament, suggesting infall of material towards the hot core at a rate of 10−3−10−4 M⊙ yr−1, while the swept up gas ring in the photodissociation region around the UCH II region may be squeezing the hot core from the other side. There are no clear indications of a disc around the MYSO down to the resolution of the observations (600 AU). A total of 21 molecules are detected, with the abundances and abundance ratios indicating that many molecules were formed in the ice mantles of dust grains at cooler temperatures, below the freeze-out temperature of CO (≲35 K). This contrasts with the current bulk temperature of ~50 K, which was obtained from H2CO. Conclusions. CORE observations allow us to comprehensively link the different structures in the W3 IRS4 region for the first time. Our results argue that the dynamics and environment around the MYSO W3 IRS4 have a significant impact on its evolution. This context would be missing if only high resolution or continuum observations were available

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Clustered star formation at early evolutionary stages. Physical and chemical analysis of the young star-forming regions ISOSS J22478+6357 and ISOSS J23053+5953

    Get PDF
    We aim to characterize the physical and chemical properties of fragmented cores during the earliest evolutionary stages in the very young star-forming regions ISOSS J22478+6357 and ISOSS J23053+5953. NOEMA 1.3 mm data are used in combination with archival mid- and far-infrared observations to construct and fit the SEDs of individual fragmented cores. The radial density profiles are inferred from the 1.3 mm continuum visibility profiles and the radial temperature profiles are estimated from H2CO rotation temperature maps. Molecular column densities are derived with the line fitting tool XCLASS. The physical and chemical properties are combined by applying the physical-chemical model MUSCLE in order to constrain the chemical timescales of a few line-rich cores. The morphology and spatial correlations of the molecular emission are analyzed using the HOG method. The mid-infrared data show that both regions contain a cluster of young stellar objects. Bipolar molecular outflows are observed in the CO 2-1 transition toward the strong mm cores indicating protostellar activity. We find strong molecular emission of SO, SiO, H2CO, and CH3OH in locations which are not associated with the mm cores. These shocked knots can be either associated with the bipolar outflows or, in the case of ISOSS J23053+5953, with a colliding flow that creates a large shocked region between the mm cores. The mean chemical timescale of the cores is lower (20 000 yr) compared to that of the sources of the more evolved CORE sample (60 000 yr). With the HOG method, we find that the spatial emission of species tracing the extended emission and of shock-tracing molecules are well correlated within transitions of these groups

    Fragmentation, rotation and outflows in the high-mass star-forming region IRAS 23033+5951. A case study of the IRAM NOEMA large program CORE

    Get PDF
    The formation process of high-mass stars (>8M.) is poorly constrained, particularly, the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (~500M.) star-forming region IRAS 23033+5951. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30 m single-dish telescope at 220GHz, we probe the gas and dust emission at an angular resolution of ~0.45", corresponding to 1900 au. In the millimeter (mm) continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by13CO (2-1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position-velocity diagrams suggest protostellar masses of ~6 and 19M. Rotational temperatures from fitting CH3CN (12K-11K) spectra are used for estimating the gas temperature and by that the disk stability against gravitational fragmentation, utilizing Toomre's Q parameter. Assuming that the candidate disk is in Keplerian rotation about the central stellar object and considering different disk inclination angles, we identify only one candidate disk as being unstable against gravitational instability caused by axisymmetric perturbations. Conclusions. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions

    Multi-scale view of star formation in IRAS 21078+5211: From clump fragmentation to disk wind

    Get PDF
    In the massive star-forming region IRAS 21078+5211, a highly fragmented cluster (0.1~pc in size) of molecular cores is observed, located at the density peak of an elongated (1~pc in size) molecular cloud. A small (1~km/s per 0.1~pc) LSR velocity (Vlsr) gradient is detected across the axis of the molecular cloud. Assuming we are observing a mass flow from the harboring cloud to the cluster, we derive a mass infall rate of about 10^{-4}~M_{sun}~yr^{-1}. The most massive cores (labeled 1, 2, and 3) are found at the center of the cluster, and these are the only ones that present a signature of protostellar activity in terms of emission from high-excitation molecular lines or a molecular outflow. We reveal an extended (size about 0.1~pc), bipolar collimated molecular outflow emerging from core 1. We believe this is powered by a (previously discovered) compact (size <= 1000~au) radio jet, ejected by a YSO embedded in core 1 (named YSO-1), since the molecular outflow and the radio jet are almost parallel and have a comparable momentum rate. By means of high-excitation lines, we find a large (14~km/s over 500~au) Vlsr gradient at the position of YSO-1, oriented approximately perpendicular to the radio jet. Assuming this is an edge-on, rotating disk and fitting a Keplerian rotation pattern, we determine the YSO-1 mass to be 5.6+/-2.0~M_{sun}. The water masers (previously observed with VLBI) emerge within 100-300~au from YSO-1 and are unique tracers of the jet kinematics. Their three-dimensional (3D) velocity pattern reveals that the gas flows along, and rotates about, the jet axis. We show that the 3D maser velocities are fully consistent with the magneto-centrifugal disk-wind models predicting a cylindrical rotating jet. Under this hypothesis, we determine the jet radius to be about 16~au and the corresponding launching radius and terminal velocity to be about 2.2~au and 200~km/s, respectively

    IRAS 23385+6053: An embedded massive cluster in the making

    Get PDF
    This study is part of the project ``CORE'', an IRAM/NOEMA large program consisting of observations of the millimeter continuum and molecular line emission towards 20 selected high-mass star forming regions. We focus on IRAS23385+6053, which is believed to be the least evolved source of the CORE sample. The observations were performed at ~1.4 mm and employed three configurations of NOEMA and additional single-dish maps, merged with the interferometric data to recover the extended emission. Our correlator setup covered a number of lines from well-known hot core tracers and a few outflow tracers. The angular (~0.45"-0.9") and spectral (0.5 km/s) resolutions were sufficient to resolve the clump in IRAS23385+6053 and investigate the existence of large-scale motions due to rotation, infall, or expansion. We find that the clump splits into six distinct cores when observed at sub-arcsecond resolution. These are identified through their 1.4 mm continuum and molecular line emission. We produce maps of the velocity, line width, and rotational temperature from the methanol and methyl cyanide lines, which allow us to investigate the cores and reveal a velocity and temperature gradient in the most massive core. We also find evidence of a bipolar outflow, possibly powered by a low-mass star. We present the tentative detection of a circumstellar self-gravitating disk lying in the most massive core and powering a large-scale outflow previously known in the literature. In our scenario, the star powering the flow is responsible for most of the luminosity of IRAS23385+6053 (~3000 L3000~L_\odot). The other cores, albeit with masses below the corresponding virial masses, appear to be accreting material from their molecular surroundings and are possibly collapsing or on the verge of collapse. We conclude that we are observing a sample of star-forming cores that is bound to turn into a cluster of massive stars

    Disk fragmentation in high-mass star formation. High-resolution observations towards AFGL 2591-VLA 3

    Get PDF
    Increasing evidence suggests that, similar to their low-mass counterparts, high-mass stars form through a disk-mediated accretion process. At the same time, formation of high-mass stars still necessitates high accretion rates, and hence, high gas densities, which in turn can cause disks to become unstable against gravitational fragmentation. We study the kinematics and fragmentation of the disk around the high-mass star forming region AFGL 2591-VLA 3 which was hypothesized to be fragmenting based on the observations that show multiple outflow directions. We use a new set of high-resolution (0.19 arcsec) IRAM/NOEMA observations at 843 micron towards VLA 3 which allow us to resolve its disk, characterize the fragmentation, and study its kinematics. In addition to the 843 micron continuum emission, our spectral setup targets warm dense gas and outflow tracers such as HCN, HC3_3N and SO2_2, as well as vibrationally excited HCN lines. The high resolution continuum and line emission maps reveal multiple fragments with subsolar masses within the inner 1000 AU of VLA 3. Furthermore, the velocity field of the inner disk observed at 843 micron shows a similar behavior to that of the larger scale velocity field studied in the CORE project at 1.37 mm. We present the first observational evidence for disk fragmentation towards AFGL 2591-VLA 3, a source that was thought to be a single high-mass core. While the fragments themselves are low-mass, the rotation of the disk is dominated by the protostar with a mass of 10.3±1.8 M\pm 1.8~M_{\odot}. These data also show that NOEMA Band 4 can obtain the highest currently achievable spatial resolution at (sub-)mm wavelengths in observations of strong northern sources

    The physical and chemical structure of high-mass star-forming regions. Unraveling chemical complexity with the NOEMA large program "CORE"

    Get PDF
    We use sub-arcsecond resolution (\sim0.4'') observations with NOEMA at 1.37 mm to study the dust emission and molecular gas of 18 high-mass star-forming regions. We combine the derived physical and chemical properties of individual cores in these regions to estimate their ages. The temperature structure of these regions are determined by fitting H2CO and CH3CN line emission. The density profiles are inferred from the 1.37 mm continuum visibilities. The column densities of 11 different species are determined by fitting the emission lines with XCLASS. Within the 18 observed regions, we identify 22 individual cores with associated 1.37 mm continuum emission and with a radially decreasing temperature profile. We find an average temperature power-law index of q = 0.4±\pm0.1 and an average density power-law index of p = 2.0±\pm0.2 on scales on the order of several 1 000 au. Comparing these results with values of p derived in the literature suggest that the density profiles remain unchanged from clump to core scales. The column densities relative to N(C18O) between pairs of dense gas tracers show tight correlations. We apply the physical-chemical model MUSCLE to the derived column densities of each core and find a mean chemical age of \sim60 000 yrs and an age spread of 20 000-100 000 yrs. With this paper we release all data products of the CORE project available at https://www.mpia.de/core. The CORE sample reveals well constrained density and temperature power-law distributions. Furthermore, we characterize a large variety in molecular richness that can be explained by an age spread confirmed by our physical-chemical modeling. The hot molecular cores show the most emission lines, but we also find evolved cores at an evolutionary stage, in which most molecules are destroyed and thus the spectra appear line-poor again
    corecore