107 research outputs found

    Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions

    Get PDF
    Background The use of custom-made 3D-printed prostheses for reconstruction of severe bone defects in selected cases is increasing. The aims of this study were to evaluate (1) the feasibility of surgical reconstruction with these prostheses in oncologic and non-oncologic settings and (2) the functional results, complications, and outcomes at short-term follow-up. Methods We analyzed 13 prospectively collected patients treated between June 2016 and January 2018. Diagnoses were primary bone tumour (7 patients), metastasis (3 patients), and revision of total hip arthroplasty (3 patients). Pelvis was the most frequent site of reconstruction (7 cases). Functional results were assessed with MSTS score and complications according to Henderson et al. Statistical analysis was performed using Kaplan-Meier and log-rank test curves. Results At a mean follow-up of 13.7 months (range, 6 \u2013 26 months), all patients except one were alive. Oncologic outcomes show seven patients NED (no evidence of disease), one NED after treatment of metastasis, one patient died of disease, and another one was alive with disease. Overall survival was 100% and 80% at one and two years, respectively. Seven complications occurred in five patients (38.5%). Survival to all complications was 62% at two years of follow-up. Functional outcome was good or excellent in all cases with a mean score of 80.3%. Conclusion 3D-printed custom-made prostheses represent a promising reconstructive technique in musculoskeletal oncology and challenging revision surgery. Preliminary results were satisfactory. Further studies are needed to evaluate prosthetic design, fixation methods, and stability of the implants at long-ter

    New chemotherapic protocols for high grade soft tissue sarcomas in adults: clinical, radiological and histological results comparing standard vs histotype-tailored chemotherapy

    Get PDF
    I sarcomi dei tessuti molli sono un gruppo eterogeneo di tumori maligni di origine mesenchimale che si sviluppa nel tessuto connettivo. Il controllo locale mediante escissione chirurgica con margini ampi associato alla radioterapia e chemioterapia è il trattamento di scelta. Negli ultimi anni le nuove scoperte in campo biologico e clinico hanno sottolineato che i diversi istotipi posso essere considerati come entità distinte con differente sensibilità alla chemioterapia pertanto questa deve essere somministrata come trattamento specifico basato sull’istologia. Tra Ottobre 2011 e Settembre 2014 sono stati inclusi nel protocollo di studio 49 pazienti con sarcomi dei tessuti molli di età media alla diagnosi 48 anni (range: 20 - 68 anni). I tumori primitivi più frequenti sono: liposarcoma mixoide, sarcoma pleomorfo indifferenziato, sarcoma sinoviale. Le sedi di insorgenza del tumore erano più frequentemente la coscia, il braccio e la gamba. 35 pazienti sono stati arruolati nel Braccio A e trattati con chemioterapia standard con epirubicina+ifosfamide, 14 sono stati arruolati nel Braccio B e trattati con chemioterapia basata sull’istotipo. I dati emersi da questo studio suggeriscono che le recidive locali sembrano essere correlate favorevolmente alla radioterapia ed ai margini chirurgici adeguati mentre la chemioterapia non sembra avere un ruolo sul controllo locale della malattia. Anche se l'uso di terapie mirate, che hanno profili di tossicità più favorevoli e sono quindi meglio tollerate rispetto ai farmaci citotossici è promettente, tali farmaci hanno prodotto finora risultati limitati. Apparentemente l’insieme delle terapie mirate non sembra funzionare meglio delle terapie standard, tuttavia esse devono essere esaminate per singolo istotipo e confrontate con il braccio di controllo. Sono necessari studi randomizzati controllati su ampie casistiche per valutare l’efficacia delle terapie mirate sui differenti istotipi di sarcomi dei tessuti molli. Inoltre, nuovi farmaci, nuove combinazioni e nuovi schemi posologici dovranno essere esaminati per ottimizzare la terapia.The soft tissue sarcomas are a heterogeneous group of malignant tumors of mesenchymal origin that develops in connective tissue. Local control with surgical excision with wide margins associated with radiotherapy and chemotherapy is the treatment of choice. In recent years, new discoveries in biology stressed that the different histology can be considered as separate entities with different sensitivity to chemotherapy, therefore it should be given as a specific treatment based on histotype. Between October 2011 and September 2014 were included in the study, 49 patients with soft tissue sarcomas with a mean age at diagnosis of 48 years (range: 20-68 years). More frequent histotypes were: myxoid liposarcoma, pleomorphic undifferentiated sarcoma, synovial sarcoma. The sites of the lesion were more frequently thigh, arm and leg. 35 patients were enrolled in Arm A and treated with standard chemotherapy with epirubicin + ifosfamide, 14 were enrolled in Arm B and received histotype tailored chemotherapy. The results of this study suggest that local recurrence seems to be positively related to radiotherapy and to adequate surgical margins while chemotherapy does not appear to have a role on the local control of the disease. Although the use of targeted therapies, which have more favorable toxicity profiles and are therefore better tolerated than cytotoxic drugs is promising, these drugs have still produced limited results. Apparently the targeted therapies do not seem to work better than standard therapies, however, they must be examined for each histology and compared with the control arm. Randomized controlled trials on large series are needed to assess the effectiveness of targeted therapies on the different histologies of soft tissue sarcomas. Moreover, new drugs, new combinations and new dosage regimens should be screened to optimize therapy

    Analysis of pregnancy-associated plasma protein a production in human adult cardiac progenitor cells

    Get PDF
    IGF-binding proteins (IGFBPs) and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A) is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs) and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation.

    Get PDF
    Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Padrões alimentares estimados por técnicas multivariadas: uma revisão da literatura sobre os procedimentos adotados nas etapas analíticas

    Full text link
    corecore