233 research outputs found
Mineralogical attenuation for metallic remediation in a passive system for mine water treatment
Passive systems with constructed wetlands have been consistently used to treat mine water from abandoned mines. Long-term and cost-effective remediation is a crucial expectation for these water treatment facilities. To achieve that, a complex chain of physical, chemical, biological, and mineralogical mechanisms for pollutants removal must be designed to simulate natural attenuation processes.
This paper aims to present geochemical and mineralogical data obtained in a recently constructed passive system (from an abandoned mine, Jales, Northern Portugal). It shows the role of different solid materials in the retention of metals and arsenic, observed during the start-up period of the treatment plant. The mineralogical study focused on two types of materials: (1) the ochre-precipitates, formed as waste products from the neutralization process, and (2) the fine-grained minerals contained in the soil of the wetlands.
The ochre-precipitates demonstrated to be poorly ordered iron-rich material, which gave rise to hematite upon artificial heating. The heating experiments also provided mineralogical evidence for the presence of an associated amorphous arsenic-rich compound. Chemical analysis on the freshly ochre-precipitates revealed high concentrations of arsenic (51,867 ppm) and metals, such as zinc (1,213 ppm) and manganese (821 ppm), indicating strong enrichment factors relative to the water from which they precipitate.
Mineralogical data obtained in the soil of the wetlands indicate that chlorite, illite, chlorite–vermiculite and mica–vermiculite mixedlayers, vermiculite, kaolinite and goethite are concentrated in the fine-grained fractions (<20 and <2 μm). The chemical analyses show that high levels of arsenic (up to 3%) and metals are also retained in these fractions, which may be enhanced by the low degree of order of the clay minerals as suggested by an XRD study.
The obtained results suggest that, although the treatment plant has been receiving water only since 2006, future performance will be strongly dependent on these identified mineralogical pollutant hosts.Fundação para a Ciência e a Tecnologia (FCT
Microbiological and geochemical characterization of As-bearing tailings and underlying sediments
Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L ), SO , Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ S-SO in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
The use of hydrogen as a potential reductant in the chromite smelting industry
The chromium (Cr) content of stainless steel originates from recycled scrap and/or ferrochrome (FeCr), which is mainly produced by the carbothermic reduction of chromite ore. Ever-increasing pressure on FeCr producers to curtail carbon emissions justifies migration from traditional FeCr production routes. The interaction between hydrogen and chromite only yields water, foregoing the generation of significant volumes of CO-rich off-gas during traditional smelting procedures. For this reason, the use of hydrogen as a chromite reductant is proposed. In addition to thermodynamic modelling, the influence of temperature, time, and particle size on the reduction of chromite by hydrogen was investigated. It was determined that, at the explored reduction parameters, the iron (Fe)-oxides presented in chromite could be metalized and subsequently removed by hot-acid leaching. The Cr-oxide constituency of chromite did not undergo appreciable metalization. However, the removal of Fe from the chromite spinel allowed the formation of eskolaite with the composition of (Cr1.4Al0.6)O3 in the form of an exsolved phase, which may adversely affect the reducibility of chromite. The study includes the limitations of incorporating hydrogen as a reductant into existing FeCr production infrastructure and proposes possible approaches and considerations.publishedVersio
Recycling pre-oxidized chromite fines in the oxidative sintered pellet production process
The chromium (Cr) content of stainless steel originates from recycled scrap and/or ferrochrome (FeCr), which is produced mainly by the carbothermic reduction of chromite ore. The oxidative sintered pellet production process is one of the most widely applied FeCr processes. The supplier of this technology specifies that recycling of chromite-containing dust collected from the pellet sintering off-gas and fines screened out from the sintered pellets (collectively referred to as pre-oxidized chromite fines) should be limited to a maximum of 4 wt% of the total pellet composition. However, the results presented in this paper suggest that recycling of such fines up to a limit of 32 wt% of the total pellet composition may improve the compressive and abrasion strengths of the cured pellet. In addition, electron microprobe and quantitative X-ray diffraction (XRD) analyses demonstrate that chromite grains present in the pre-oxidized chromite fines consist, at least partially, of crystalline phases/compounds that will improve the metallurgical efficiency and specific electricity consumption (i.e. MWh/ton FeCr produced) of the smelting proces
Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA
Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate
Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In surface samples (0-35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts (e.g., ZnSO4·nH2O) were detected in the surficial sample. Taken together, these data suggest the bioaccessibility and lability of metal(loid)s are altered by mineral weathering, which results in both the downward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the surface.24 month embargo; published online: 7 February 2015This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Arsenic contamination and speciation in surrounding waters of three old cinnabar mines
Arsenate Incorporation in Gypsum Probed by Neutron, X-ray Scattering and Density Functional Theory Modeling
- …
