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Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communi-
ties from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s
(e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestab-
lished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation,
linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consid-
eration when assessing human and environmental health risks associated with mine sites. At the
semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assem-
blage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed
in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of fer-
rous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then
jarosite accompanied by a progressive decrease in pH (7.3–2.3).

Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb,
and Zn with surficial concentrations 41.1, 10.7, 39.3 mmol kg�1 (3080, 2200, and 2570 mg kg�1), respec-
tively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and
4.2-fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic
elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal spe-
ciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest
sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the
redox transition zone (25–54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite,
and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe phases, principally ferrihydrite. In
surface samples (0–35 cm), metal(loid)s are found as sorbed species or incorporated into secondary Fe
hydroxysulfate phases, such as schwertmannite and jarosites. Metal-bearing efflorescent salts
(e.g., ZnSO4�nH2O) were detected in the surficial sample. Taken together, these data suggest the bioacces-
sibility and lability of metal(loid)s are altered by mineral weathering, which results in both the down-
ward migration of metal(loid)s to the redox boundary, as well as the precipitation of metal salts at the
surface.

Published by Elsevier Ltd.
1. Introduction

Beneficiation of massive sulfide deposits for economic base
metals such as Cu, Zn, and Pb results in mine-wastes that can be
enriched in unextracted metals and metalloids (Hudson-Edwards
et al., 2011; Lottermoser, 2010). Under surficial conditions, mine
tailings undergo mineral transformations that alter (and often
increase) the bioaccessibility of residual metals (Hayes et al.,
2009; Meza-Figueroa et al., 2009). Mine tailings are also character-
ized by poor soil structure, high soluble salts, high concentrations
of phytotoxic elements, and low pH (Hammarstrom et al., 2005; Ye
et al., 2002), resulting in a lack of vegetative cover and substantial-
ly increased vulnerability to particle dispersion due to wind and
water erosion (Mendez and Maier, 2008). As a result, mine tailings
from arid and semi-arid climates pose a risk to human health from
fugitive dust emissions into neighboring communities.

Arid and semi-arid conditions diminish the prevalence of peren-
nial surface water and, therefore, the dispersion of acid mine drai-
nage. However, the dry climate also makes it difficult to predict

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apgeochem.2015.01.005&domain=pdf
http://dx.doi.org/10.1016/j.apgeochem.2015.01.005
mailto:robroot.az@gmail.com
mailto:s.hayes@alaska.edu
mailto:schowalt@email.arizona.edu
mailto:rmaier@cals.arizona.edu
mailto:chorover@email.arizona.edu
http://dx.doi.org/10.1016/j.apgeochem.2015.01.005
http://www.sciencedirect.com/science/journal/08832927
http://www.elsevier.com/locate/apgeochem


132 R.A. Root et al. / Applied Geochemistry 62 (2015) 131–149
the stability of weathered solid phases based on aqueous thermody-
namics from pore water chemistry. The dry conditions are nonethe-
less well suited for in situ characterization by synchrotron X-ray
absorption spectroscopy (XAS). This study examines toxic metal
behavior in a legacy mine tailings impoundment at the Iron King
Mine and Humboldt Smelter Superfund site (IKMHSS) in central
Arizona. The site was added to the National Priorities List in 2008
due to its proximity to the town of Dewey-Humboldt and the elevat-
ed (>2000 mg kg�1) concentrations of several toxic metal(loid)s, of
particular concern were As and Pb (USEPA, 2014).

1.1. Weathering trajectory

Residual sulfide minerals in mine tailings dissolve under oxic
surficial conditions and release sulfate, metal(loid)s, and protons.
Concurrent dissolution of carbonate and silicate minerals con-
sumes protons, but the relative abundance of these minerals is
often too low to prevent progressive tailings acidification
(Jambor and Blowes, 1994). These reactions result in pore waters
that, depending on pH, can be supersaturated with respect to sul-
fate salts (e.g. melanterite, PbSO4, ZnSO4�nH2O), iron hydroxysul-
fates (e.g. jarosite, schwertmannite, copiapite), secondary
carbonates (e.g. PbCO3, ZnCO3), and (oxy)hydroxides (e.g. ferrihy-
drite) (Hudson-Edwards et al., 1996). However few studies have
focused specifically on the change in speciation of toxic met-
al(loid)s that occurs during weathering of mine tailings in arid
and semi-arid environments.

A previous study examined the mineral weathering trajectory
and speciation of the major redox active elements (Fe and S) in
the top 2 m of the IKMHSS tailings (Hayes et al., 2014). The study
reported dramatic changes in color (dark gray to orange) and pH
(7.3–2.3) with decreasing depth in the top 0.5 m accompanied by
changes in texture (fining upward) and mineral assemblage indi-
cating progressive transformation of ferrous iron sulfides to ferri-
hydrite and gypsum, which in turn weathered to schwertmannite
and jarosite. These results were largely consistent with previous
studies from more temperate environments (e.g. Alpers and
Brimhall, 1988; Bigham and Nordstrom, 2000; Jambor et al.,
2000), except for the persistence of ferrihydrite in the near surface
acid tailings and the lack of detectable goethite, the thermody-
namically predicted weathering product of ferrihydrite. This min-
eral weathering trajectory directly controls the speciation,
lability, and transportability of toxic metal(loid)s found in these
tailings.

1.2. Speciation and lability of toxic metal(loid)s in mine tailings

1.2.1. Selective sequential extraction
Despite criticisms (incomplete dissolution of target phase, dis-

solution of non-target phases, re-precipitation during extractions,
etc.), selective sequential extractions (SSE) continue to be compre-
hensively used to examined geomedia and are readily accessible to
researchers allowing an operationally-defined quantitative and
qualitative analysis of targeted phases (Bacon and Davidson,
2008; Dold, 2003). Selective extractions are a useful investigative
tool to help distinguish surface adsorbed ions, strongly and weakly
sorbed ions, and operationally-defined isolated mineral phases
within complex heterogeneous natural samples, particularly when
coupled with complementary direct observational techniques,
such as synchrotron XAS measurements.

1.2.2. Application of XAS
Total toxic metal(loid) exposure is only weakly correlated to the

metal(loid) body burden or bioaccessibility (e.g. Casteel et al.,
2006; Freeman et al., 1992; McBride et al., 2009). Bioaccessibility
and lability of toxic metal(loid)s in mine tailings is controlled by
speciation, or local bonding environment, and is influenced by
weathering time, mineral assemblage, and climate. The speciation
of toxic metal(loid)s in the IKMHSS wastes was probed using XAS,
which provides information on the molecular-scale bonding envi-
ronment (Brown and Sturchio, 2002; Kelly et al., 2008). This study
focuses on toxic elements As and Pb, which are harmful to humans
even at low concentrations (As: O’Day, 2006; Pb: Canfield et al.,
2003) and Zn due to the phytotoxic effects that may stymie reme-
diation efforts (Kopittke et al., 2010).

1.2.3. Arsenic in mine tailings
Arsenic, listed number one on the ATSDR priority list of haz-

ardous substances, is a known toxin and carcinogen even at trace
levels, causing a variety of human health problems including dia-
betes, cardiac and renal disease, immunological suppression, and
bronchitis (CDC, 2013). Arsenic in mine tailings is generally from
weathered arsenic bearing sulfides such as arsenopyrite (FeAsS)
(Nordstrom and Alpers, 1999; Nordstrom and Archer, 2003;
Smedley and Kinniburgh, 2002). Arsenic speciation and lability in
mine tailings has been extensively studied with XAS, particularly
in environments associated with acid mine drainage (Corriveau
et al., 2011a, 2011b; Foster et al., 2003; Hudson-Edwards and
Edwards, 2005; Jamieson et al., 2006; Kim et al., 2011; Maillot
et al., 2013; Savage et al., 2000) and the reader is referred to the
recent reviews on the topic (Foster and Kim, 2014). These studies
have shown that arsenate is the primary weathering product of
FeAsS when oxygen is not limited and important secondary miner-
als and assemblages include scorodite, amorphous ferric arsenate,
bidentate binuclear innersphere sorption complexes on ferrihy-
drite, and As(V) structurally incorporated (or adsorbed) jarosite.

1.2.4. Lead in mine tailings
Lead is of significant health concern because of the known neu-

rotoxicological impacts, especially pediatric and pre-natal, and is
listed number two on the ATSDR priority list of hazardous sub-
stances (CDC, 2013). Recently, the CDC lowered the regulatory lim-
it for blood Pb levels from 10 to 5 lg dL�1, in response to studies
demonstrating a statistical reduction in IQ in children at the higher
limit (Canfield et al., 2003). Due to the prevalence of Pb in mine
wastes, several studies have employed XAS techniques to study
speciation in mine tailings and have illustrated the transformation
of PbS to relatively more bioaccessible secondary weathering prod-
ucts including: cerrusite, anglesite, plumbojarosite, and sorbed Pb
phases often with Fe or Mn (hydr)oxides (Hayes et al., 2011, 2012;
Meza-Figueroa et al., 2009; O’Day et al., 1998; Ostergren et al.,
1999; Schuwirth et al., 2007; Van Damme et al., 2010;
Waychunas et al., 2002). Studies of Pb in low pH Fe-rich tailings
highlight the importance of plumbojarosite and sorbed species
(Hayes et al., 2012; Ostergren et al., 1999). Other studies of semi-
arid environments have demonstrated the accumulation of bioac-
cessible Pb-rich sulfate salts at the surface of mine tailings
(Hayes et al., 2012; Meza-Figueroa et al., 2009). Studies of carbon-
ate-rich settings demonstrate the most important secondary phas-
es are carbonate and sorbed species (O’Day et al., 1998; Ostergren
et al., 1999).

1.2.5. Zinc in mine tailings
Zinc, which is commonly associated with sulfide ore-derived

mine tailings, is generally soluble under acidic conditions, and
can be phytotoxic at pore water concentrations exceeding ca.
30 lM (2 mg L�1), thereby limiting revegetation (Kopittke et al.,
2010; Long et al., 2003). The use of XAS has been applied to inves-
tigate Zn speciation in mine tailings (Juillot et al., 2006, 2003;
Luxton et al., 2013; Manceau et al., 2004; O’Day et al., 1998;
Schuwirth et al., 2007; Van Damme et al., 2010). Principal forms
of Zn in ore are sphalerite [ZnS], smithsonite [ZnCO3], Zn-bearing
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oxides [e.g., franklinite (ZnFe)2O4)], and Zn-bearing silicates [e.g.,
hemimorphite, Zn4Si2O7(OH)2�2H2O], which weather to smith-
sonite or goslarite [ZnSO4�7H2O], or Zn-bearing secondary ferric
phases of ferrihydrite or jarosite, depending on pH (Jamieson
et al., 1999; Vodyanitskii, 2008). Schuwirth et al. (2007) combined
SSE and XAS to examine Zn speciation in temperate sulfide mine
tailings in the northern Rhineland of Germany, and found Zn-rich
phyllosilicates, adsorbed Zn species, and Zn coprecipitated with
goethite were evident in both oxidized surface (pH 5.5) and
reduced subsurface (pH 7.2) tailings, along with sphalerite in sub-
surface samples. O’Day et al. (1998) reported the formation of Zn
hydroxide and sorbed Zn, depending on total Fe content, but did
not find evidence of Zn carbonate phases. Another study examining
sediments from a mining impacted watershed found principally
ZnCO3, tetrahedrally coordinated Zn surface complex, and Zn
incorporated in phyllosilicate clays (Van Damme et al., 2010). A
study of Zn in arid mine tailings reported the near-complete deple-
tion of ZnS in 50 years in the top 0.5 m and formation of Zn-incor-
porated phyllosilicate, sorbed species, and ZnSO4�nH2O in surficial
samples (Hayes et al., 2011). Iron(III) (hydr)oxides are high affinity
sorbents for Zn in natural systems (O’Day et al., 1998; Panfili et al.,
2005; Schuwirth et al., 2007), and XAS data indicate that, when
present at low concentration, Zn sorbs preferentially via inner-
sphere tetrahedral coordination to ferrihydrite and birnessite
(Manceau et al., 2002, 2004; Toner et al., 2006; Waychunas et al.,
2002) in oxic Fe- and Mn-rich environments, respectively.

1.3. Offsite transport

Quantifying the amount of metal(loid)s being transported
off-site from fugitive mine waste dusts, and the vector of metal
dispersal, are critical components in assessing risk to humans and
proximal ecosystems. Wind is a key mechanism of dispersion in
(semi)arid systems, particularly where tailings lack vegetative cover
that would act to reduce the ground wind shear vector and resultant
particle lofting (Breshears et al., 2003; Csavina et al., 2012). Although
metal-laden particulate transport has been demonstrated to
decrease logarithmically as a function of distance from the source
(Benin et al., 1999), fine particulates (<40 lm) can be transported
over regional scales (Csavina et al., 2012; Derry and Chadwick,
2007). Several studies have shown that the concentration of toxins
can increase with decreasing effective particle diameter (Beamer
et al., 2012; Kim et al., 2011), and in sulfide-bearing mine tailings,
up to 80% of toxic metals may be present in the <40 lm size fraction
(Romero et al., 2007). This indicates that the particles with the great-
est toxic load may be most vulnerable to wind transport over region-
al distances (Csavina et al., 2012) and are likely to be inhaled or
ingested via the hand to mouth exposure (Plumlee and Morman,
2011; Plumlee and Ziegler, 2007). Additionally, the high rate of
evapotranspiration in arid and semi-arid environments can lead to
the accumulation of soluble efflorescent salts containing toxic met-
als at the tailings surface; these small particles are vulnerable to ero-
sive forces and are generally readily bioavailable (Csavina et al.,
2012; Hayes et al., 2012; Meza-Figueroa et al., 2009). Secondary sul-
fate salts, iron (oxy)hydroxides, and jarosites detected in surface
tailings tend to be very fine grained (e.g., Desborough et al., 2010),
adding to the likelihood that they could be transported by wind
and fluvial processes.

In the semi-arid Southwestern US, about half of the annual pre-
cipitation occurs during intense summer rains of the North
American Monsoon, leading to fluvial dispersion of tailings and
episodic dissolution of efflorescent salts with resultant seasonal
pulses of meta(loid)s into the environment (Jambor et al., 2000;
Kim et al., 2013; Navarro et al., 2008). Such events indicate that
surface water is also capable of transporting particulates and dis-
solved metal(loid)s substantial distances downstream. Although
the relative importance of aeolian and fluvial transport are site
specific, these are the mechanisms of dispersion for toxic met-
al(loid)-bearing particles.
1.4. Site description

The Iron King Mine and Humboldt Smelter Superfund site
(IKMHSS) is a legacy mine tailings impoundment in central
Arizona (Dewey-Humboldt, Arizona, USA) from efforts to exploit
a nearby massive sulfide deposit for base metals including Cu,
Zn, and Pb and smaller amounts of precious metals. The mining
operations resulted in ca. 4 � 106 m3 of tailings covering
620,000 m2 containing elevated As, Pb, and Zn above regional
remediation limits and remains barren and vulnerable to erosion
(additional details in Supplementary Material (SM) and Hayes
et al., 2014). Tailings were initially hydraulically sluiced into a nat-
ural topographic depression without compaction or engineered
retention, with dikes later stacked around the perimeter to contain
the accumulating tailings. The barren surface tailings are acidic (pH
2–3), contain elevated metal(loid)s, high salt content (electrical
conductivity, EC = 6.5–9 dS m�1), and are susceptible to wind and
water erosion, thus increasing the risk of exposure (Hayes et al.,
2014).

A previous study of the IKMHSS established the major miner-
alogy as a function of depth, where depth was used as a proxy
for time in the progression of mineral evolution (Hayes et al.,
2014). It was shown that sulfides, dominant in the deepest tailings
at circum-neutral pH, weather to form gypsum and ferrihydrite in
the top 0.5 m of the tailings. In surficial samples, schwertmannite
and jarosite were also detected, accumulating with decreasing
pH, along with efflorescent sulfate salts. Surprisingly, ferrihydrite
was detected in all samples exhibiting oxidation, even at pH as
low as 2.3, pointing to the metastable persistence of this phase out-
side the predicted environmental conditions favoring its stability
in semi-arid environments. In the current study, we present toxic
metal(loid) speciation (As, Pb, Zn) within the context of the steep
mineral weathering gradient previously described, in an effort to
assess the present and future bioaccessibility and translocation of
these metal(loid)s, and the associated health risk to the adjacent
community.
2. Materials and methods

2.1. Sample and reference material collection

The IKMHSS tailings samples were collected by excavating a pit
to about 1 m, samples were collected and composited across the
pit face for discrete depth intervals on the basis of morphological
transitions (color, consistency, etc. details in Hayes et al., 2014).
A core extending to 2 m depth was extracted adjacent to the exca-
vated pit to acquire deep tailings and recover the presumed un-
oxidized, originally deposited material. Samples were sealed in
double bagged low O2 diffusion bags and transported on dry ice
(�78 �C). Samples were sub-sectioned under anaerobic atmo-
sphere (H2:N2 = 5%:95%) in a vinyl glove box (Coy Laboratory
Products, MI) to obtain three representative splits from each depth
increment and limit post sampling oxidation.

Splits were analyzed as in Hayes et al. (2014) for (i) moisture
content and particle size; (ii) sieved (<2 mm), lyophilized at
�80 �C and 130 mbar prior to chemical analysis; (iii) kept field
moist, frozen, and in darkness prior to sieving and grinding in
preparation for XRD and XAS analysis; or (iv) prepared as thin sec-
tions following anaerobic drying at room temperature and vacuum
imbedding in metal free epoxy (EPO-TEK 301-2FL; Epoxy
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Technologies, Inc.). Additional details regarding sample prepara-
tion procedures are available in the SM.

Reference materials (for As, Pb, and Zn) were collected from
mineral source distributors, whereas others, e.g. Zn and As sorbed
jarosite, schwertmannite, and As(III) and As(V) sorbed 6-line ferri-
hydrite, were synthesized in accordance with published methods
and equilibrated with 0.1 mM As, Pb, or Zn for 24 h centrifuged
and washed (Bigham et al., 1990; Cornell and Schwertmann,
2003; Gao et al., 2013; Regenspurg and Peiffer, 2005) (see
Table S1 for details). The adsorbed metal(loid) mass (in g kg�1), cal-
culated on the basis of loss from solution, was 14 (AsIII, ferrihy-
drite), 14 (AsV, ferrihydrite), 9.6 (Pb, hematite) and 3.3 (Zn,
ferrihydrite). All reagents used were ACS grade or better. The iden-
tities of all references were confirmed by XRD.
2.2. Chemical characterization

Tailings samples were analyzed for bulk chemical and environ-
mental analyses of pH, EC, moisture content, color, texture, and
petrographic microscopy as described in Hayes et al. (2014).
Total elemental composition was measured by inductively coupled
plasma-optical emission spectroscopy (ICP-OES) and inductively
coupled plasma-mass spectrometry (ICP-MS) following digestion
or fusion. Copper, Zn, As, and Pb were measured by ICP-OES follow-
ing total digestion (HF, HNO3, HClO4, HCl), and all other elements
were reported from ICP-MS, following fusion with LiBO2 and
Li2B4O7 (Activation Labs, Ontario, CA). Instrumental neutron acti-
vation analysis (INAA) was used to confirm As total concentrations.
Certified reference materials and quality control samples were
digested and analyzed along with the tailings samples with an
acceptance range of ±10% of the certified value to verify precision
and accuracy in sample preparation and analysis.

The metal(loid) lability and operationally defined solid-phase
speciation were determined using a 6-step SSE procedure modified
after Dold (Dold, 2003; Neaman et al., 2004). A composite of the
top 25 cm of tailings (material being used in remedial plant growth
trials; Solis-Dominguez et al., 2012), as well as samples from the
pit and core depth increments (A–G; 0–183 cm) were subjected
to the SSE (Table 1; details in SM and Hayes et al., 2014). Briefly,
the extractions included: (1) nitrogen sparged deionized water
(DI H2O), targeting soluble salts e.g. gypsum; (2) 0.2 M ammonium
nitrate (NH4NO3), targeting easily exchangeable and bioavailable
metal(loid)s; (3) 1 M ammonium acetate (AAc), targeting
Table 1
Selective sequential extraction steps for mine tailings.

Extractant Conc.
(M)

Solid:
solutiona

Time
temp.

Targeted phase

1 DI H2O
N2 sparged 18.2 MX cm

– 1:30 1 h,
25 �C

Soluble salts, e.g.

2 NH4NO3

Ammonium nitrate pH 7
1.0 1:30 2 h,

25 �C
Mobile, easily exc

3 AAc
Ammonium acetate pH 4.5

0.2 1:30 2 h,
25 �C

Acid soluble carb

4 NaH2PO4

Sodium phosphate pH 5.0
1.0 1:40 24 h,

25 �C
Specifically sorbe
(hydr)oxide surfa

5 AAO
Ammonium oxalate pH 3,
dark

0.2 1:40 2 h,
25 �C

Reducible poorly

6 CBD
Citrate-bicarbonate-
dithionite, pH 7, dark

e 1:40 2 h,
80 �C

Reducible crystal
goethite and jaro

Procedure modified from Dold (2003), results for As, Pb, and Zn in Fig. 2 and tabulated
a Mass ratio of solid tailings to extraction solution.
b Operationally defined as plant available fraction in Merkel (1996).
c e.g. Schwertmannite and ferrihydrite.
d e.g. Secondary jarosite and goethite; the dissolution of plumbo- and other substitut
e CBD was 0.265 M sodium citrate, 0.1107 M sodium bicarbonate, and 0.1435 M sodiu
non-specifically sorbed ions and acid soluble carbonates; (4) 1 M
sodium phosphate (NaH2PO4), targeting specifically adsorbed
ligands, e.g. inner sphere As complex on ferric (hydr)oxides; (5)
0.1 M ascorbic acid plus 0.2 M ammonium oxalate (AAO), targeting
poorly crystalline Al, Mn, and Fe (hydr)oxides; and (6) citrate-bi-
carbonate-dithionite (CBD), 0.265 M sodium citrate, 0.1107 M
sodium bicarbonate, and 0.1435 M sodium dithionite, targeting
reducible crystalline Al, Mn, and Fe (hydr)oxides. The residual
was calculated by mass balance from the total elemental analysis
described above. The SSE was run in triplicate, with the standard
deviation used as the reported error.
2.3. Bulk XAS collection and data reduction

Bulk metal speciation was interrogated with synchrotron XAS at
the Stanford Synchrotron Radiation Lightsource (SSRL) beam lines
4-1 and 11-2. A double-crystal monochromator (Si [220] crystal,
/ = 90), detuned 40% to reject higher order harmonics was used
in conjunction with three 15 cm N2 filled ion chambers and a 13-
, 32-, or 100-element germanium fluorescence detector. Vertical
slits of 2 mm (Zn and As) or 3 mm (Pb) were used for all samples,
and horizontal slits were adjusted between 2 and 10 mm to max-
imize fluorescence signal without saturation of the detector.
Measurements for Zn were performed at room temperature, and
Pb and As measurements were collected at <15 K using an
Oxford liquid He cryostat operating well below the Debye tem-
perature for Pb (105 K) and As (282 K) (Kittel, 2005) thereby reduc-
ing spectral contributions from lattice vibrations (Dalba and
Fornasini, 1997; King, 1958) and minimizing beam-induced
changes in samples, e.g. oxidation or reduction (Bunker, 2010). A
minimum of 3 scans were collected in transmission mode (used
for most reference materials) and 3–15 scans were collected in
fluorescence mode (used for tailings and sorption samples).
Aluminum foil filters were used to minimize the contribution of
matrix Fe fluorescence (Pb and As only) and Z-1 filters with sol-
ler-slits were used to attenuate elastic and Compton scattering,
as appropriate, for fluorescence measurements.

Data reduction was performed by averaging replicate scans in
SIXPack (version 1.01) (Webb, 2006) after energy calibration.
Energy was calibrated by defining the maximum of the first deriva-
tive of metal foil spectra as: As K-edge = 11,867 eV, Pb LIII-edge =
13,035 eV, and Zn K-edge = 9659 eV. The background signal was
subtracted with linear pre-edge parameters: As: �150 eV to
Reference

efflorescent sulfate salts Dold (2003)

hangeable, bioaccessibleb Merkel (1996)

onates and non-specifically sorbed Dold (2003)

d, e.g. inner-sphere As complexed on ferric
ce sites

Keon et al. (2001) and Welch and
Lico (1998)

crystalline Fe, Al, and Mn oxidesc Dold (2003) and Jackson et al.
(1986)

line Fe, Al, and Mn oxides, e.g. including
sited

de Koff et al. (2008) and Jackson
et al. (1986)

in Table S3.

ed jarosite may not be complete with this sequence (Dold, 2003).
m dithionite at unadjusted pH 8.6.
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�20 eV; Pb: �200 eV to �50 or �30 eV; Zn: �210 eV to �100 eV
relative to E0) and normalized to the post edge oscillation as
described elsewhere (Root et al., 2007). Isolation of As backscatter-
ing contributions was accomplished by fitting a cubic spline func-
tion to the post-edge extended fine structure absorption envelope,
which was then weighted by k3 and fit by non-linear least squares
methods in k-space using k = 2 Å�1 to kmax Å�1 in the fit with the
OPT program in EXAFSPAK (George and Pickering, 2000;
Pickering, 2001; O’Day et al., 2004a, 2004b; Root et al., 2007 for
XAS details). Zinc and Pb post-edge spectra were normalized using
a quadratic fit to the EXAFS (150 eV above E0 to the end of EXAFS
for bulk spectra and 40 eV to ca. 150 eV for l-XAS) using the
SIXPack data analysis package (Webb, 2006). EXAFS oscillations
were extracted using cubic spline functions. For both Pb and Zn,
a variety of EXAFS extraction procedures were attempted and after
iterative fittings, the background subtraction method that consis-
tently gave the best fit statistics, as indicated by reduced v2 in lin-
ear combination fits was used for all samples and references for all
subsequent analysis. An R-space reduction function (Rbkg) was
applied, which minimizes the contribution from low frequency
oscillations (i.e., peaks at low R) associated with physically impos-
sible bond distances (Newville et al., 1993). The final background
subtraction parameters were: Rbkg = 1.5 and spline range 1–9 or
10 Å�1 for Pb and Rbkg = 1.0 and spline range 1–11.5 for Zn, with
no spline clamps applied in either case.

2.4. XAS linear combination fits

During linear combination fitting (LCF), the total number of ref-
erences was limited to three or fewer components for each indi-
vidual fit. The statistical measure, v2, was used to compare the
relative ‘‘goodness’’ of successive fits. Previous work has suggested
the detection limit of phases in XANES is roughly 5–10% (Foster
et al., 1998; O’Day et al., 2004a), thus components fit with a frac-
tion less than 10% were removed and the spectra were refit to
determine if the addition of the low concentration phase sig-
nificantly improved fit statistics. Best fit determination was accom-
plished by comparing R-values after fit iterations, and fit sensitivity
was tested by comparing fits over larger and smaller spectral
regions and as normalized derivative and non-derivative spectra
to assure the component was consistently the best fit.

All LCF components were constrained to be non-negative and
component sums were not forced to unity. The oxidation state of
As was determined with LCFs of XANES by fitting the normalized
edge jump using linear least-squares combinations of reference
compound spectra with the computer package DATFIT
(PICKERING, 2001). Fits were performed using arsenopyrite as
the reduced sulfide model and ferrihydrite with sorbed arsenite
and arsenate as the As(III) and As(V) models. It was recognized that
As(V) may be present in multiple phases in the oxic samples, but
As XANES is generally inadequate to resolve different As(V)–ferric
(hydr)oxide complexes. Fitting of Pb and Zn derivative XANES (Pb:
13,020–13,070 eV; Zn: XANES, 9650–10,050 eV) and EXAFS (Pb:
k-range 3–9 or 10 Å�1; k3-weighting; Zn: k-range 2–11 Å�1; k3

weighting) proceeded independently to test for internal
consistency.

Lead fits were performed using the cycle fit function in SIXPack
(Webb, 2006), initially using a reference library of 12 Pb-bearing
phases, previously published (Hayes et al., 2012). Components
were added until the fits were statistically improved by less than
10% through the addition of additional spectra (Table S1).
Previously described low pH mine tailings sample, T2.6, was used
as the XAS reference for plumbojarosite due to the high structural
disorder of plumbojarosite formed under surficial conditions, lead-
ing to low EXAFS amplitude and a high Debye–Waller factor
(Hayes et al., 2012). Linear combination fits (LCF) to bulk Zn
spectra were initially performed using the entire reference spectral
library used in Hayes et al. (2011) (for details on references used in
fits see Table S1). Bulk fits were constrained to be non-negative,
and not forced to sum to unity. The final fit components were
selected after iterative fitting because they consistently resulted
in best fits (based on reduced v2).

2.5. XAS shell by shell fitting

Theoretical phase-shift and amplitude functions were calculat-
ed with the program FEFF (Rehr, 1993) using atomic clusters taken
from the crystal structures of arsenopyrite and angelellite, a known
As(V) mineral with geometries similar to those expected for absor-
ber backscatterer interactions of As in the tailings. Multiple scat-
tering paths (MS) from As(V)–O (As–O–O–As) tetrahedra were
included as they have been shown to improve EXAFS fits beyond
the first shell for arsenate compounds (Beaulieu and Savage,
2005; Ona-Nguema et al., 2005). During EXAFS fitting, the values
of interatomic distance (R, Å) of the As–O, As–S, and As–Fe shells
were allowed to vary. The photoelectron threshold energy shift,
DE0 (eV), was allowed to float as a common parameter during fit
iterations, i.e., a single DE0 parameter was used for all backscatter-
er paths in a fit. There is a strong correlation between Debye–
Waller (r2) and coordination number (N); therefore one of the
terms was held constant during EXAFS fitting. One parameter
was allowed to adjust in fits, while with the other was assigned
a fixed value based on known structures (e.g. N = 4 for As–O in
arsenate) or experimental data (r2 from fits to known crystalline
compounds, e.g. FeAsS). Based on empirical fits to known As refer-
ence compounds, estimated errors were R ± 0.02 Å, N or r2 ± 30%
for atoms beyond the first shell (see O’Day et al., 2004b).
Samples with As XANES showing measurable arsenopyrite (below
25 cm) were fit with a single variable of linked arsenopyrite paths.
The arsenopyrite paths were assigned to adjust as a stoichiometric
unit, i.e., not allowed to freely adjust but rather adjusted in respon-
se to the molar concentration of arsenopyrite in the sample. This
allowed the addition of multiple paths without exceeding the
Nyquist criterion of independent fit parameters (Nidp) or increasing
the degrees of freedom

Nidp ¼ 2DkDR=p ð1Þ
2.6. X-ray fluorescence mapping

Synchrotron micro-focused X-ray fluorescence (l-XRF) elemen-
tal maps were collected on thin sections at SSRL on Beamline 2–3
using a Si (111) monochromator crystal, a 2–3 lm incident beam
cross-section, and a single element vortex detector; where mea-
sured fluorescence related to concentrations of excited elements.
Images were collected with a pixel step size of 2.5–3.0 lm, a
50 ms dwell time, and an excitation energy of 13,000 eV and
13,050 eV to isolate the contribution of As K and Pb LIII emission.
After XRF maps were collected, PCA analysis was applied to the
40–80 k pixel images to locate regions of interest and unique che-
mical/spectral differences using SMAK (version 1.01, Webb, 2011).
Based on the results of this analysis, representative pixel regions
were selected for micro-focused XAS analysis using a 2–3 lm beam
spot. Spectra were energy calibrated and analyzed as described
above for bulk XAS.

2.7. Multiple energy phase mapping

Additional mapping analyses were performed at energies across
the Fe and As absorption edges in order to map the spatial distribu-
tion of specific oxidation states or Fe- and As-bearing phases
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(details in Mayhew et al., 2011; Root et al., 2013). Multiple maps
were collected for the same spatial region of interest at multiple
energies selected to maximize species differentiation (11,869,
11,872, 11,875, and 11,880 eV for As; and 7114, 7121, 7124,
7126, and 7137 eV for Fe). These maps can be de-convoluted using
PCA analysis and the absorption coefficients of each of the phases
identified using micro-XAS to map the spatial distribution of speci-
fic elemental species (Fig. S1).

2.8. Geochemical modeling

Equilibrium activity (Pourbaix) diagrams of Eh and pH corre-
sponding to theoretical stability fields among solid and aqueous
species were computed with the ACT2 program in GWB V7
(Bethke, 1994) using a modified version of the Lawrence
Livermore National Laboratory thermodynamic database (thermo.
com.v8.r6+; Delany and Lundeen, 1990) augmented with data from
Bigham et al. (1996) for schwertmannite, Kashkay et al. (1975) for
plumbojarosite, Nordstrom and Archer (2003) for aqueous As spe-
cies (Table S2). In this geochemical context, Eh was used as an equi-
librium modeling proxy for fO2 in Eh–pH space for the As, Pb, and
Zn systems, with activity: (Fe and S) = 10�3.5 M, and (As, Pb and
Zn) = 10�6 M at 25 �C and 1 atm (details in SM). The coverages of
the calculated stability fields were dependent on the model activ-
ity inputs of As, Pb, Zn, Fe, S, O2, etc. and the range and robustness
of thermodynamic solubility constants from the literature. Phases
not observed with the spectroscopic techniques employed were
suppressed in the model, e.g. orpiment and realgar. While various
solubilities are reported (e.g. ferrihydrite reported = 3.0: Majzlan
et al., 2004; and = 5.56 Delany and Lundeen, 1990), highly cited
thermodynamic constants were used when possible to relate the
model to similar works. Nonetheless, the activity–activity diagram
summarizes the equilibrium calculations with respect mineral
solubilities under conditions that represent an environmentally
relevant scenario in acid mine tailings.

3. Results

3.1. Characterization of IKMHSS tailings

The IKMHSS near surface tailings exhibited low pH (pH = 2.3),
fine grained texture (% sand:% silt:% clay = 15:45:40), elevated salts
(EC = 6.5–9 dS m�1), and were nearly devoid of neutrophilic
heterotrophic bacterial counts (6.7 ± 2.3 � 102 CFU g�1) (Hayes
et al., 2014; Solis-Dominguez et al., 2012). Whereas the mass con-
centration of Pb varied only slightly with depth (10.6–
13.6 mmol kg�1; Table 2), As and Zn concentrations were lower
near the surface, increased with depth to a maximum concentra-
tion in sample E (35–38 cm at the visible redox boundary), and
Table 2
Characterization of the Iron King Mine tailings.

Sample Deptha (cm) pHb Asc (mmol kg�1) Pbc (mmol kg�1)

A 0–5 2.3 41.1 10.6
B 5–15 2.3 37.6 13.6
C 15–25 3.7 54.5 12.8
D 25–35 5.5 53.3 8.06
E 35–38 6.3 70.1 11.5
F 38–54 6.0 64.6 12.7
G 180–183 7.3 44.3 11.9

a Depth is the composited interval below the surface.
b pH was measured on wet paste.
c Concentrations of As, Pb, Zn are in mmol kg�1 of each in the bulk tailings at each de
d Major components are those that make up >10% by XRD Rietveld fits,
e Minor components determined by XRD and XANES. Phases present in order of estim

chl = chlorite, fh = ferrihydrite, gyp = gypsum, ill = illite, jar = jarosite, plag = plagioclase, p
then decreased again with depth into the ‘‘parent material’’ (repre-
sented here by sample G, 180–183 cm). Arsenic and Zn mass con-
centration in the tailings were strongly correlated with cadmium
(As:Cd r2 = 0.982, p < 0.001; Zn:Cd r2 = 0.982, p < 0.01) but not with
Pb (As:Pb r2 = �0.053 Zn:Pb r2 = �0.003). A correlation matrix
showing correlation coefficients and p-values for all analyzed ele-
ments is given in the SM (Fig. S2). To better constrain enrichment
or depletion with depth in the tailings, total elemental concentra-
tions were normalized to Ti, which was assumed to be immobile
and redox insensitive across the sampled profile. Fig. 1 demon-
strates the relative enrichment (+s) or depletion (�s) of con-
taminant metal(loid)s, As, Pb, and Zn as a function of depth
relative to the parent material (sample G), according to the follow-
ing equation (Brimhall and Dietrich, 1987).

sTi;j ¼
Cj;w

Cj;p
� CTi;p

CTi;w
� 1 ð2Þ

where sTi,j represents the chemical depletion (if negative) or enrich-
ment (if positive) of element j with respect to Ti, C represents solid
phase mass concentration in the weathering zone (w) as measured
relative to parent material (p). The sTi values for As and Zn show
similar trends with moderate depletion in the oxic gossan zone,
�0.28 for As and �0.68 for Zn and enrichment below the redox
boundary with maximum enrichment of 1.01 and 1.32 for As and
Zn, respectively (Fig. 1). Lead was relatively invariant with depth,
although a slight depletion was evident in the near surface and at
the apparent redox boundary.

Selective sequential extraction (SSE) results for As, Pb, and Zn
are shown in Fig. 2 (full set of numerical results are given in
Znc (mmol kg�1) Majord components Minore components

39.3 qtz, gyp, jar, fh plag, chl, pyt
34.9 qtz, gyp, fh, jar plag, chl, pyt
79.2 qtz, gyp, pyt, ill plag, chl, fh, schw
86.3 qtz, gyp, pyt plag, chl, ank, fh

168 qtz, gyp, ill, pyt plag, chl, fh, sid, ank
148 qtz, pyt plag, chl, ill, gyp, sid, ank
107 qtz, pyt chl, ank, cal

pth sampled.

ated abundance (secondary minerals shown in italics): ank = ankerite, cal = calcite,
yt = pyrite, qtz = quartz, schw = schwertmannite, sid = siderite.
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Table S3, including data for Mg, Al, K, Ti, Mn, and Cr). At greater
than 35 cm depth, only low levels of As were extracted in the
AAc (0.27–0.64%) and AAO (11–14%) steps, and most was unex-
tracted or non-labile (79.6–83.6%). In the upper oxic zone (0–
25 cm), SSE extracted As was 75–123% of the measured total, and
was mostly associated with AAO extractable forms (37–71.8%);
8.7–19.7% of the As was extracted with NaH2PO4. The CBD extrac-
table fraction decreased with increasing depth from 30.7% at 0–
5 cm to 30.1% at 5–15 cm and 10.1% at 15–25 cm, and <0.2% for
all depths below 35 cm.

In all samples, Pb was mostly unextractable (57.9–91.3% resi-
dual) with the 6-step SSE. In the deepest samples (E–G), the largest
pool of liberated Pb was from the AAc extraction (23–35%) which
increased with increasing depth. The extractable Pb in A–D (0–
25 cm) samples was principally liberated by the AAO (5.1–12.4%)
and CBD (1.9–4.8%) extractions.

Large pools of Zn were solubilized at all depths by 18 MX
deionized water (5.1–40.1%) and AAO (12.1–30.7%) steps. In the
deepest samples (F and G), the AAc extracted 36.3% and 32.3%
Zn, respectively. Additionally, extracted Zn from near surface sam-
ples (0–25 cm) was from CBD, which decreased with depth from
49.3% at the near surface (5–15 cm) to <1% below 25 cm, with
minor Zn liberation from the AAc and NaH2PO4 extractions in the
near surface (0–25 cm).



Table 3
Linear combination fit results for As Ka XANES.a

Sample Depthb (cm) FeAsSc (%) As(V)
ads-Fh

d (%) c.l.e
Pf (%)

Fig. 3g

A 0–5 100 3.2 100
B 5–15 100 5.0 100
C 15–25 112 4.0 112
D 25–35 9 91 4.1 100
E 35–38 24 84 4.3 108
F 38–54 60 37 1.6 97
G 180–183 102 1.1 102

Fig. 8h 0–25
l1 103 1.3 103
l2 3 99 2.2 102
l3 9 92 2.3 101
l4 17 86 2.9 103
l5 103 1.5 103

a Results from linear combination least-squares fits.
b Composited depth range below surface.
c Fit with crystalline arsenopyrite spectrum (O’Day et al., 2004a).
d Fit with arsenate adsorbed to HFO (hydrous ferric oxide precipitated as 6-line

ferrihydrite, Gao et al., 2013).
e Goodness-of-fit reported as 99% confidence limit (c.l.) defined as three times the

estimated standard deviation (Pickering, 2001).
f Total of fit component parameters not normalized to unity;
g A–G refers to samples in Fig. 3.
h Micro-focused XANES at 2 lm spot size from Fig. 8.

Table 4
As K-edge EXAFS fit results.A

aSym is the bulk symmetry or As coordination of absorber–backscatterer pair in sample
bParameter fixed in least-squares fit using value from fits to reference compounds; / pa
cSpectrum fit with a multiple scattering path from As–O–O–As in arsenate tetrahedra a
dThe best fit to the FeAsS structure was achieved by including the first 6 As–N shells, in

A Results of non-linear least-squares fits; N is the number of backscattering atoms at dis
reduced least-squares goodness-of-fit parameter (= F-factor/[# of points – # of variable
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3.2. Arsenic speciation

XAS was used to measure the oxidation state and speciation of
As as a function of depth. The oxidative weathering transformation
from arsenopyrite in deeper tailings to arsenate in surficial sam-
ples was quantified using LCFs of XANES spectra (Fig. 3, Table 3).
This was possible because of the characteristic edge features at
11,869 ± 1 eV for sulfides, 11,872 ± 1 eV for arsenite, and
11,875 ± 1 eV for arsenate, as previously reported (Foster et al.,
1998; O’Day et al., 2004a; Root et al., 2009; Savage et al., 2000).
All XANES and EXAFS spectra fits were consistent with mixtures
of two components, As(V) sorbed to ferrihydrite and arsenopyrite.
The results indicate the presence of only arsenopyrite (102%) by
XANES LCF at depth G that is progressively replaced with an
increasing mass fraction of As(V) ligated to oxygen (100–112%)
in the near surface (0–25 cm). The XANES fits for the near surface
samples of As(V) sorbed to ferrihydrite indicates that the As spe-
cies in the near-surface tailings was arsenate.

Select depths were analyzed by As EXAFS to investigate the
local coordination of the weight averaged As atoms (Fig. 3b,
Table 4). At the deepest depth analyzed, 180 cm, the EXAFS spec-
trum was a close match to arsenopyrite, which has distinctly dif-
ferent spectral characteristics from arsenian pyrite (Fe,As)S2

(Savage et al., 2000), which was not observed. EXAFS and XANES
analyses agreed that the only As species present in sample G
, explained in text.
rameter linked in fit to the parameter directly above.
s 12 scattering paths.
dicated in shaded regions.
tance (R); r2, the Debye–Waller term; DE0 is the threshold energy difference; v2 is a

s]). Scale factor (S2
0) = 1.
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(180–183 cm) was arsenopyrite, which was fit to a model of
arsenopyrite with the number of coordinating backscatters (N)
fixed allowing the radial distance between backscatters (R, Å)
and a common Debye–Waller factor (r2) to vary. The r2 term
was thus determined (0.005) and set for arsenopyrite-associated
paths in subsequent fits of intermediate depths.

The near surface tailings (sample A) EXAFS spectrum was fit
with a first shell of oxygen at 1.68 Å, typical of the As–O4 tetrahe-
dra. The second shell was best fit to As–Fe backscatters at 3.29 Å,
consistent with bidentate binuclear 2C coordination of arsenate
to ferrihydrite, a likely coordination environment based on the tail-
ings high Fe content (13 wt%) and the strong affinity of As(V) for
ferric (oxy)hydroxides (Dixit and Hering, 2003). The 2C coordina-
tion has previously been shown to be the dominant mode of
As(V) adsorption to octahedra of iron (hydr)oxides including
goethite, lepidocrocite, hematite, hydrous ferric oxide (HFO), schw-
ertmannite, and As loaded jarosite (Paktunc and Dutrizac, 2003;
Root et al., 2007; Savage et al., 2000; Sherman and Randal, 2003).

Based on XANES fits of sample A (0–5 cm), the structure of As(V)
in tetrahedral coordination to four apical oxygen atoms was used
to constrain the coordination number (N) in EXAFS analysis by
assigning a fixed value of As–O = 4, and allowing r2 to adjust in
the fit. For the multiple scattering (MS) paths As–O–O–As within
the arsenate tetrahedra, N was likewise fixed at 12 based on path
geometry and r2

MS was linked to the adjusted r2
As–O term for the

As–O scattering calculation. The r2 term, determined for As–O in
the tailings sample with only arsenate (sample A), was used for sub-
sequent fits for As–O first shell ligands and N was allowed to adjust
in the fits.

The As EXAFS spectrum of sample D (25–35 cm) was fit to four
oxygen atoms in the first shell at 1.68 Å, but features beyond the
first shell were not sufficiently fit with the same interatomic 2C dis-
tances as the near surface sample. To achieve a good fit to the sec-
ond shell required two As–Fe distances, 3.28 Å and 3.42 Å,
consistent with 2C coordination of edge sharing Fe octahedra,
and 2bC bidentate binuclear ligation to two non-edge sharing Fe
(bridging) octahedra, respectively and a contribution from
arsenopyrite (�20%) described above. The r2 term was fixed at
0.005 for all arsenopyrite paths based on the sample G fit.

In sample F (38–54 cm), As was present as mixed species of
arsenate and arsenopyrite with the contribution from arsenopyrite
more obvious in the EXAFS spectra in the k-range of �6–9 Å�1. The
EXAFS of arsenian pyrite are significantly different from
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Fig. 4. Least-squares linear combination fits of Pb LIII in IKMHSS tailings (A) first-deriva
stippled red line. The spectra show that Pb in the tailings weathers from galena to prima
where pH is >3. (For interpretation of the references to color in this figure legend, the r
arsenopyrite (Savage et al., 2000) and evidence of arsenian pyrite
was not observed. The contribution of arsenopyrite in the As
EXAFS was sufficient to explain the spectra from the intermediate
depth, however arsenate sorbed to pyrite could not be ruled out.
Interestingly, there was no observed As(III) in the tailings samples.

3.3. Lead speciation

Linear combination fits (LCF) of the derivative XANES and
EXAFS revealed Pb speciation changed as a function of depth
(Fig. 4, Table 5). Generally, the derivative XANES and EXAFS LCFs
were in good agreement, but the sum of the XANES components
was closer to unity. XANES fits were performed for all samples,
but destructive interference in some EXAFS spectra (samples
D–F) resulted in extremely low EXAFS amplitude and precluded
collection of quality EXAFS data. Visual examination of the EXAFS
reference spectra (Fig. 4) demonstrated that PbS was nearly 180�
out of phase with plumbojarosite and other oxidized species,
resulting in fits that were non-unique based on comparative
reduced v2 values.

Galena was the dominant phase in sample G with minor
PbCO3 (�20%), accounting for the very broad leading edge feature
in the derivative XANES. Above the deepest sample, a strong sig-
nal from plumbojarosite was observed at all other depths. Fits of
intermediate samples indicated a mixture of PbS, which became
depleted with decreasing depth, associated with an increase in
plumbojarosite and sorbed Pb associated with Fe (oxy)hydrox-
ides. Samples D–F XANES were fit with plumbojarosite (59–
68%) and galena (40–21%). Iron (oxy)hydroxide associated Pb,
modeled using Pb-sorbed to hematite, was detected in
samples B and C (21% and 13%, respectively) in addition to
plumbojarosite.

Both EXAFS and XANES indicated that, in surficial tailings (sam-
ple A), plumbojarosite was the only XAS-detectable Pb-bearing
phase. However, the EXAFS fit total to 121%, indicated that the
sample had greater amplitude in the EXAFS region relative to the
reference spectrum, which was a plumbojarosite mine tailings
sample from a previous study (Hayes et al., 2012). Deviation of
the fit totals from unity indicates differences in the degree of order
or distribution of bond distances for IKMHSS samples relative to
the reference samples employed in the fits. While the XANES LCF
indicated plumbojarosite as the sole Pb-bearing phase (103%) the
higher mass fraction total EXAFS LCF for sample A indicates
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Fig. 5. Normalized Zn K-edge XANES collected at 8–15 K for (A) of IKMHSS tailings,
and (B) normalized Zn reference compounds: ZnSO4 = goslarite, Zn-jar = Zn sorbed
jarosite, Zn-hem = Zn sorbed hematite, smithsonite = ZnCO3, and sphalerite = ZnS
(see SM for source and synthesis methods for reference compounds). Data are
shown by solid black lines and fits are shown by stippled red line. The XANES fits
show that Zn in the tailings weathers from sphalerite to primarily jarosite-adsorbed
Zn and goslarite at the surface. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 5
Linear combination fits of derivative Pb LIII XANES and EXAFS.a

bIndicates composited below surface depth range.
cFit with plumbojarosite in mine tailings from a previous study (Hayes et al., 2012).
dFit with Pb adsorbed to hematite (Hayes et al., 2012).
eFit with crystalline galena.
fFit crystalline with hydrocerussite.
gReduced v2 and R-factors are given as goodness-of-fit parameters.
hSum of the fractional fit components not normalized to unity.
iSamples A–G refers spectra in Fig. 3.
jThe shaded region is micro-focused XANES at spot size 2 lm from spots 7 and 8 from the Pb panel in Fig. 6 and correspond to spots (c) and (d) in Fig. 7.

a Results from least-squares fits.
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increased structural order relative to the reference sample used
and plumbojarosite in samples B and C (fit totals 82% and 83%,
respectively).
3.4. Zinc speciation

Zinc XANES showed speciation changes due to oxidative weath-
ering as a function of depth in the deep tailings, from ZnS at depth
(in parent material) to ZnCO3 to Zn sorbed to Fe (hydr)oxides and
jarosites, and finally ZnSO4�nH2O in the surface samples (Fig. 5,
Table 6). At depth G, Zn was fit to sphalerite (ZnS), but ZnS was
depleted to below detection by sample C. Smithsonite was stable
under circumneutral to slightly acidic conditions and was found
in samples D–F, with the greatest contribution to the XANES fit
at depth F (76–16%). Smithsonite may have extended to deeper
tailings than the increment probed (e.g. 54–180 cm), but was not
observed at 180 cm. Iron (oxy)hydroxide associated Zn was detect-
ed in samples B–E with a maximum contribution of 94% in sample
C, however the specific Fe species (e.g. ferrihydrite, goethite, or
hematite) were not distinguishable by Zn XANES alone. Zn adsorp-
tion to jarosite minerals was detected in samples A–C (6–68%) with
increasing contribution with decreasing depth. At the surface
(sample A), Zn present as a jarosite-adsorbed species (68%) was
augmented by its presence in efflorescent salt ZnSO4�nH2O (30%).

3.5. Elemental associations with l-XRF mapping

To examine the weathering products at the grain-scale and con-
strain references used in bulk XAS fits, composited (0–25 cm) tail-
ings were examined using l-XRF mapping (Fig. 6). This technique
imaged elemental (S, Fe, As, Pb, Zn, Ca, Cu, K, Si, and Ti) spatial dis-
tributions at a 2.5 lm2 scale and was used to infer the presence of
mineral phases based on co-located elements. The high-Fe high-S
tailings (ca. 13 wt% each) led to three distinct Fe–S micro-environ-
ments as probed by l-XRF: (i) sulfidic, characterized by grains of
pyrite (Fig. 6, spots 1, 4, 5); (ii) acid sulfate, with jarosite (Fig. 6,
spots 2, 7, 8); and (iii) sulfate salts, dominated by gypsum (Fig. 6,
spot 3).

Sulfur and iron are observed throughout the image, but high-
concentration bright spots are consistent with pyrite grains



Table 6
Zinc XANES fit resultsa.

Sampleb Depth (cm) Derivative Zn XANESa Goodness of fit

ZnSO4
c Zn-ads Jar

d Zn-ads-FeOx
e ZnCO3

f ZnSg c.l.h
Pi

A 0–5 30 68 4 98
B 5–15 30 68 <1 98
C 15–25 6 94 3 100
D 25–35 51 16 33 1 100
E 35–38 66 8 30 2 104
F 38–54 76 21 1 98
G 180–183 99 2 99

a Results from least-squares fits.
b Sample names and depths are consistent with previous figures and tables.
c Fit with goslarite, representing ZnSO4�nH2O.
d Fit with Zn2+ adsorbed to synthetic jarosite.
e Fit with Zn2+ adsorbed to hematite as an iron (oxy)hydroxide surface analog.
f Fit with crystalline smithsonite.
g Fit with crystalline sphalerite.
h c.l. is the confidence limit, assigned three times the estimated standard deviation for the fit (Pickering, 2001).
i Total of fit components, not normalized to unity.
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(Fig. 6, spots 1, 4, 5). Elemental association plots of Fe and S
graphically demonstrate distinct regions with relatively high Fe
and S intensity (Fig. 7). Arsenic was also observed to be distributed
throughout the region sampled, but not as might be expected con-
centrated in areas with highest co-occurrence of Fe and S counts
(e.g. pyrite grains). Rather As was spatially associated with high-
Fe areas and formed a rim on the cross-cut pyrite grain in the
upper left quadrant (Fig. 6, spots 4 and 6; Fig. 8). Close examination
of this grain showed a rind of As (Fig. 8), and l-XANES at spots (1
through 5) across the grain showed As(V) concentrated on either
side of the pyrite grain, and a small contribution of As ligated with
S through the interior of the grain (Fig. 8). Lead was concentrated
in an area in the upper right quadrant of the image (Fig. 6, spots
7 and 8, note: same spots as Fig. 7 spots l-c and l-d, Table 5), asso-
ciated with the area mapped as Fe- and S-rich, but not in the pyrite
associated areas of highest Fe and S concentrations. The Pb-rich
area was also enriched with As.

In contrast to the broader spatial distribution of As and Pb, Zn
was observed as a single high-concentration ‘‘hot spot’’ (Fig. 6, spot
9). The Zn hot-spot showed no correlation with S, Fe, or As and was
assumed to be associated with low-Z elements that are not detect-
ed with XRF (e.g. smithsonite). Although fluorescence yield scales
non-linearly with atomic number (Z), counts per pixel can be quan-
titatively compared, keeping in mind the attenuated fluorescence
yield at lower Z, and the bright zinc spot with 3000 counts indicat-
ed a single grain with a high Zn weight percent or stoichiometry



S 
(c

ts
)

150

100

50

2000150010000 005

2000150010000 005
0

gypsum50 μm

plagioclase

Fe
 (c

ts
)

8000

6000

4000

2000

05 001 0510
0

a

ferric 

(map B)

gypsum

jarosite

fe
rr

ih
yd

rit
e

a

b

[As]

a

a
1500

1000

500

0

A
s 

(c
ts

)
A

s 
(c

ts
)

1500

1000

500

0 0002 0004 0006 0008
0

Ca (cts)

Ca (cts)

S (cts)

Fe (cts)

high

high

low

low

d

c

d

c

As

S

Ca

 in each pixel (n=76042)

(A) (B)

(C) (D)

b

Fe Pb

Fig. 7. lXRF elemental association maps from 30 lm double polished petrographic thin section from composited 0–25 cm IKMHSS tailings from Fig. 6. (A) Ca and S with inset
(a) showing grain in Fig. 8. (B) Intensity of isolated sulfide components operationally-defined by masking region of high S and no Ca, encircled in the S v Ca correlation plot. (C)
As, Fe and Pb elemental associations, spot (b) refers to the high Fe low S region, (c) and (d) are Pb LIII lXANES spots with fits shown in Fig. 6 (spots l-7 and l-8), fits in and
Table 5; (D) relative As concentration. Labels on masked regions of correlation plots indicate likely phases based on elemental associations.

142 R.A. Root et al. / Applied Geochemistry 62 (2015) 131–149
consistent with smithsonite. This was in contrast to the broader
spatial distribution of As and Pb.

Calcium distribution showed strong correlation with that of S,
specifically in areas that did not also correspond to Fe, consistent
with gypsum (Fig. 6, spots 10 and 11). Similar to Zn, Cu showed
a single ‘‘hot-spot’’, but in the upper right quadrant. This spot rep-
resented the count intensity maximum and exceeded the maxi-
mum intensity of Fe. The co-association of this spot with Fe and
S and not As was consistent with the ore mineral chalcopyrite
(CuFeS2) and not tennatite (Cu12As4S13). Titanium was observed
associated with silicon-rich grains, consistent with rutile (TiO2)
in quartz.

The presence of jarosite minerals, with the generalized formula
KFe3

III(SO4)2(OH)6, was confirmed with XRD and Fe XANES (Hayes
et al., 2014). Therefore, XRF should show a per pixel correlation
of K with Fe/S if the jarosite present was the K-type.
Fluorescence yield increases with atomic number, and a stoichio-
metric relationship in the intensity counts for analyzed elements
relating to an expected mineral is not necessarily expected.
However, fluorescence maps can be used to extract elemental
ratios, if differences in fluorescence yield for each element is con-
sidered. Here, K is only observed in areas of relatively low Fe and
S, indicating that S, K, and Fe did not coexist in jarosite at the scale
and for the region mapped. This indicates that other jarosite-family
minerals (e.g. hydronium [H3O+], nantro [Na+] or plumbo [Pb2+])
are likely present in the sample (Bishop and Murad, 2005;
Jamieson et al., 2005; Swayze et al., 2000). The distribution of sili-
con throughout the sample was consistent with the ubiquity of
quartz and phyllosilicates, as quantified by XRD (Rietveld refine-
ment, in Hayes et al., 2014).

3.6. Arsenic and iron speciation with multiple energy l-XRF mapping

Fluorescence images compiled from four energies across the As
edge and five energies across the Fe edge demonstrate the distribu-
tion of corresponding As and Fe speciation at 2.5 lm2 pixel
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resolution for 25–35 cm depth (Fig. 9, sample D). Speciation distri-
bution from the ME l-XRF maps indicate arsenic was present as
two distinct species; As(V) widely distributed and hot-spots of
arsenopyrite (Fig. 9A). Iron speciation was dominated by ferrihy-
drite, with grains of jarosite and pyrite (Fig. 9B). The assigned spe-
cies were constrained by the fluorescence response in the ME maps
across the relevant absorption edge and l-XANES collected under
the same mapping conditions at points of interest determined by
PCA (see Root et al., 2013 for details). Comparing the As and Fe
maps showed the co-association of As(V) and the ferrihydrite
aggregate roughly centered in the images, and the independent
pyrite and arsenopyrite grains. The ME l-XRF maps showed
As(V) associated with ferrihydrite and pyrite grains generally
separate from arsenopyrite and free of detectible As substitution
(i.e., arsenian pyrite).

4. Discussion

The fate of toxic metal(loid)s at IKMHSS is controlled by ion
mobility and secondary mineral precipitation as a result of primary
sulfide and gangue mineral dissolution in the gossan zone. Solid
phase products are dominated by ferric iron and sulfate minerals
(detailed in Hayes et al., 2014) that, as shown herein, act to buffer
the release of toxic elements to the environment. Speciation con-
trols solubility and bioaccessibility of these toxic metal(loid)s,
therefore understanding the transformations and translocations
in the progressively oxidized weathering zone is key to under-
standing metal(loid) mobility and risks to surrounding communi-
ties and ecosystems (Foster et al., 1998). This study explored the
fate of As, Pb, and Zn as a function of depth through the redox zone
that occurs within the first two meters of the tailings profile.

Spectroscopic characterization of As, Pb, and Zn by XAS, togeth-
er with SSE and previously reported quantitative XRD (QXRD by
Rietveld analysis), and Fe- and S-XANES (Hayes et al., 2014),
showed concomitant changes in speciation along a subsurface
redox-driven weathering front that developed from the reaction
with atmospheric oxygen. These results showed that the sulfidic
component of the deep tailings was composed principally of pyrite,
with minor amounts of arsenopyrite, galena, and sphalerite (minor
sulfides were <2.5% of total sulfides based on elemental analysis
and QXRD) and likely represent the initially deposited waste
material.

We have characterized the tailings profile (to 2 m) in terms of
three distinct zones, the sulfide-rich zone (>180 cm), a transition
(or intermediate) zone that spans the redox gradient (25–54 cm),
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and an oxic (gossan) zone (0–25 cm). The sulfidic parent material
likely represent the initially deposited waste material, composed
principally of pyrite, with minor amounts of arsenopyrite, galena,
and sphalerite (minor sulfides were <2.5% of total sulfides based
on elemental analysis and QXRD). The transitional zone (samples
D–F) is defined here as that portion of the profile comprising the
primary sulfide form of contaminant metal(loid)s, but having
undergone some extent of oxidative transformation, along with
the presence of carbonate minerals. Carbonate phases of Pb, Zn,
and Fe as (hydro)cerussite, smithsonite, and ankerite were detect-
ed in the redox transitional zone but are not detected at pH below
6.3. The onset of oxidative weathering of the initially deposited
tailings was evident at 38–54 cm (sample E) below the surface,
although it may extend to depths between 54 and 180 cm that
were not analyzed. Selective sequential extraction results suggest
intermediate depth tailings contain a mixture of sulfides, carbon-
ates, and secondary ferric (oxyhydroxy)sulfates. According to geo-
chemical modeling, these phases are not predicted to co-exist,
highlighting the important kinetic (potentially coupled to water
through-flux) limitations on oxidative weathering in the semi-arid
tailings (Fig. 10). Note that pyrite, the most recalcitrant of the sul-
fides found in these tailings, is present in all samples, while
arsenopyrite, galena, and sphalerite are not detectable in the surfi-
cial zone samples (0–25 cm), and it has been shown that toxic met-

als can be released from sulfide tailings even at low fO2, and
without the concurrent release of acid (Heidel et al., 2013;
McKibben et al., 2008). This may be attributed to faster dissolution
kinetics of arsenopyrite, galena, and sphalerite relative to pyrite
either because of greater specific surface area of the crystallites,
or higher chemical affinity. The oxic zone, defined by fine-particle
size (45% clay fraction), low pH (<4) and absence of carbonates,
extended from the surface to a depth of 25 cm. Speciation in this
portion of the tailings has greatest implications for human health
because tailings at the land–air interface are inherently vulnerable
to wind shear of fugitive dust and transport into neighboring
communities.
4.1. Arsenic weathering

The As XANES and EXAFS indicated only arsenopyrite in the
deepest tailings. Importantly, no spectral evidence was found for
realgar, orpiment, or arsenian pyrite, which have readily distin-
guished spectra, even with low-As arsenian pyrite (Foster et al.,
1998; O’Day et al., 2004b; Savage et al., 2000). The absence of arse-
nian pyrite indicates that the sole source As species in the massive
sulfide deposit was arsenopyrite that nucleated and grew spatially
or temporally separated from the major sulfide pyrite.
Arsenopyrite solubility is sensitive to both pH and Eh, and is not
predicted to be stable at elevated Eh (Fig. 10).

The highest concentrations of As in these tailings (up to
70.1 mmol kg�1) were found in the intermediate transitional zone,
indicating that translocation from the relatively depleted surface
gives rise to accumulation near the visible redox boundary
between orange and gray tailings (Fig. 1). Extractible As in this
horizon was limited to 5–8% with NaH2PO4 (targeting ligand
exchange of inner-spherically adsorbed As), and 11–37% by AAO
(targeting poorly crystalline iron hydroxides hosting occluded
As(V)). The XAS results indicate the presence of two distinct As
species, FeAsS and iron (oxy)hydroxide-adsorbed As(V) in acidic
tailings, represented in the general oxidative dissolution of
arsenopyrite (and pyrite) and resultant iron (oxy)hydroxide (as
Fe(OH)3) precipitation (Eq. (3)):

2FeIIAs0ð�IÞS�IIð�IÞ
ðsÞ þ 7O2 þ 8H2O! 2½FeIIIðOHÞ3�ðsÞ þ 2H2AsVO�4

þ 2SVIO2�
4 þ 6Hþ ð3Þ

During the oxidation of arsenopyrite and precipitation of iron
(oxy)hydroxide, Fe2+ oxidizes to Fe3+ (�e�), S2� oxidizes to SO4

2�

(�8e�) and As0 oxidizes to As5+ (�5e�), with multiple redox species
passing through multiple oxidation states that lead to the many
varied oxidation products reported in the literature (see Corkhill
and Vaughan, 2009).

Analysis of the As EXAFS at 25–35 cm indicate about 20%
arsenopyrite, with the remaining As(V) associated with Fe octahe-
dra, apportioned at As–Fe distances of 3.28 Å and 3.42 Å. The dis-
tance at 3.28 Å is consistent with a 2C bidentate binuclear corner
sharing of arsenate tetrahedra with the edge-sharing Fe octahedra.
This surface complex is consistent with values reported for As
sorbed to ferric (oxy)hydroxide (Table 7, and refs. therein). The
longer distance at 3.42 Å indicates As is bridging two non-edge
sharing Fe octahedra by corner sharing apical oxygen atoms in a
2bC complex, which is close the reported 3.38 Å distance reported
for As coprecipitated ferrihydrite by Sherman and Randal (2003),
but not as long as monodentate 1V distances (3.57–3.65 Å) report-
ed for goethite and maghemite (Morin et al., 2008; Waychunas
et al., 1995). The interatomic differences at the intermediate depth
reflect changes in the average local geometry of the sorbent
(oxy)hydroxide phase and subsequent bonding of As relative to
samples at shallower depths and lower pH. In this study, arsenate
was observed associated with iron (oxy)hydroxides (Fig. 9)
and absorbed to an iron (oxy)hydroxide rim on a pyrite grain by



Table 7
EXAFS determined arsenate–ferric hydroxide distances.

Mineral Fe–As (Å) Coordination Note Ref.

Goethite 3.50–3.65 1V m.m. 1, 2
3.23–3.25 2C b.b. 1, 2
2.80–2.93 2E m.b. 2, 3, 4

Lepidocrocite 3.29–3.32 2C b.b. 1, 4, 5
Ferrihydrite

(HFO)
3.38–3.48 2bC b.b.n.e. 5, 6
3.16–3.35 2C b.b 1, 5, 6, 7

Schwertmannite 3.27–3.30 2C distorts
Schw.

8

Jarosite 3.25–3.35 Td structurala 9, 10, 11
Beudantite 1.62 (As–O)b Td structural 9, 10, 11
Scorodite 3.35–3.36 2bC structural 9, 10
IKMHSS tailingsc 3.29 ± 0.01 2C

References: 1. Waychunas et al. (1995); 2. Fendorf et al. (1997); 3. Manceau (1995);
4. Farquhar et al. (2002); 5. Sherman and Randal (2003); 6. Root et al. (2007); 7.
Voegelin et al. (2007); 8. Maillot et al. (2013); 9. Savage et al. (2005); 10. Paktunc
and Bruggeman (2010); 11. Majzlan (2014).
1V = arsenate tetrahedra corner sharing mononuclear monodentate (m.m.) with
apical oxygen from iron hydroxide octahedra, 2E = edge sharing mononuclear
bidentate (m.b.), 2C = corner sharing binuclear bidentate (b.b.) from edge sharing Fe
Oh, 2bC = corner sharing binuclear bidentate bridging from non-edge sharing Fe
(b.b.n.e).

a Arsenate can reside in the tetrahedral Td site substituting for (SO4) in alunite–
jarosite group minerals.

b Beudantite has an As–O distance that is much shorter than those observed in
the tailings.

c Oxidized mine tailings (top 0–25 cm) from Iron King Mine.
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l-XRF (Fig. 8). Fig. 9 demonstrates that As is spatially associated
with the ferrihydrite as As(V). However, co-existing, isolated grains
of arsenopyrite are also observed. The As(V) is generally not spa-
tially distributed with the arsenopyrite grains, indicating a translo-
cation of As associated with oxidative dissolution.

To examine the variation in As speciation induced by weather-
ing at the grain scale, the raw intensities of the As lXANES from
Fig. 8 were used to estimate the relative concentrations of different
species across a sulfide grain (Fig. 7). The As in the grain interior
was 23–34% of that in the outer rind (spot 5), indicating a surface
enrichment of As(V). The interior of the grain had relatively low
total As, mostly As(V), no As(III), and a small shoulder �5 eV below
the As(V) white line, which indicated that some As was ligated to S
(Fig. 8). The As–S ligand accounted for 9% and 17% (fit with
arsenopyrite) in spots 3 and 4 (Table 3). The chalcophile surface
complex of As on the soft base site of the pyrite grain has been
reported (Bostick and Fendorf, 2003), but cannot be differentiated
from trace As substitution in the pyrite.

The fate of liberated As from mine tailings has been extensively
studied, and surface complexation on pyrite by both As(III) and
As(V) (Bostick and Fendorf, 2003; Zouboulis et al., 1993), secondary
mineral precipitation [e.g., pitticite (Fe2(AsO4)(SO4)OH�2H2O) and
pharmacosiderite (2FeAsO4�Fe(OH)3�5H2O); Beattie and Poling,
1987], and the formation of an oxidation layer composed of
Fe(III) arsenite and arsenate (Corkhill and Vaughan, 2009) have
been reported. Notably absent from any analysis at this site is
the presence of arsenite species, suggesting the oxidation of
arsenopyrite either (i) progresses as described above (Eq. (3)), (ii)
releases arsenate and arsenite (Walker et al., 2006) but results in
preferential re-adsorption of arsenate thereby relatively losing
the arsenite to pore water, or (iii) results in a transient As(III) aque-
ous or solid (colloidal) phase that is rapidly converted to As(V), as
reported in laboratory studies (e.g., Asta et al., 2010) and that may
not have been captured with the employed methods.

There was near complete release of As during the SSE of the
near surface samples (A–C). Most As was removed in the AAO step
targeting poorly-ordered secondary ferric phases (37–72%) and
secondarily in the CBD step (10–31%), whose contribution
increased with proximity to the surface, reflecting an increasing
proportion of long-range ordered ferric phases with approach to
the surface. A slightly smaller NaH2PO4 extractable pool, reflecting
inner-spherically adsorbed As (9–20%) was also measured in the
intermediate samples. XANES spectra of the 0–25 cm composite
sample indicate small, but noticeable, changes in the As bonding
environment after successive extraction steps, most notably, there
was a �0.5 eV change in peak broadening measured as the full
width at half the maximum peak height (FWHM) after the AAO
extraction removed ferrihydrite (Fig. S3). The sharpening white
line peak may be indicative of a lower distribution of atomic
arrangements, and would be consistent with for example, As occu-
pation of the tetrahedral site in jarosite. This is further supported
by As XANES collected after the CBD extraction, which shows
mostly arsenopyrite as a residual species, but a contribution
remains from As(V) that is likely due to arsenate sequestered as
stoichiometric sulfate substitution in recalcitrant jarosite.

The combination of XAS with extractions indicates that As is
principally associated with ferrihydrite-like phase with copre-
cipitated and/or occluded As with a pool of jarosite associated As
that increases with decreasing pH, consistent with findings from
similar mine waste sites (Slowey et al., 2007). The ratio of non-s-
toichiometric As sorbed or occluded with ferrihydrite compared
to secondary jarosites is difficult to resolve because the As–Fe dis-
tances are very similar and deconvolution of a mixture of both was
not possible. When As substitutes for SO4 in the tetrahedral site of
jarosite, the As–Fe distance is 3.33 Å (Savage et al., 2000), slightly
longer than the 3.29 Å distance expected for 2C. The As–Fe 2C
arrangement was found to be the best fit to the near surface sam-
ple (0–5 cm) (Table 7).

Ferrihydrite is a meta-stable phase that is predicted to weather
to goethite or jarosite and is thermodynamically unstable at low
pH. The long term fate of As adsorbed to ferrihydrite is unknown,
and ferrihydrite mineral transformation could potentially release
As. Arsenic uptake by jarosite can incorporate ca. 10–17% of the
toxic metalloid (Paktunc and Dutrizac, 2003; Savage et al., 2005),
and the maximum loading of As in plumbojarosite is not known.
Thermodynamic calculations indicate no predicted As-bearing
minerals in the oxidized zone of the mine tailings, but in a semi-
arid climate, the meta-stability of high-affinity ferrihydrite sur-
faces evidently buffer the release of As, maintaining solution phase
concentrations below saturation with respect to more soluble and
bioaccessible phases like arseniosiderite or ferric arsenate.

The sequestration of As as calcium arsenates (e.g. arse-
niosiderite, [Ca2FeIII

3 O2(AsO4)3�3H2O]) has been reported from tail-
ings in semi-arid regions with abundant gypsum (Foster et al.,
2011; Kim et al., 2013). However, the stoichiometric relation of
Ca:As in arseniosiderite or yukonite [Ca2Fe3(AsO4)4(OH)�14H2O]
would necessitate a spatial correlation of As and Ca, which was
not observed in the 2–3 lm2 pixels of the lXRF maps. Corner sharing
of As(V) tetrahedra and Ca octahedra has similar second shell fea-
tures to As–Fe 2C in the EXAFS FT, as observed by (Arai, 2010), but
was ruled out based on XRD and l-XRF. Further, EXAFS fits of the
IKMHSS samples did not successfully match As–Ca models and the
phase was not considered in the final fits. Foster et al. (2011) points
out that while there are no thermodynamic data on the stability of
calcium arsenates at low pH, the phases may be unstable as condi-
tions become more acidic.

4.2. Lead weathering

The large pool of Pb solubilized by the AAc SSE step (Fig. 2) for
the deepest tailings sample is attributed to acid soluble cerrusite
(PbCO3, log Ksp = �13.13), noted as the most labile form of environ-
mental Pb in swine model bioavailability studies (Casteel et al.,
2006). Local atomic structure of the deepest sample probed with
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Pb LIII EXAFS (Fig. 4) shows a very consistent beat pattern with ref-
erence mineral galena, but with a slightly dampened amplitude
from 3 to 9 k (Å�1) (Fig. 4). The presence of Pb carbonate, which
has a similar low-frequency beat pattern in the EXAFS region, but
at lower amplitude, accounts for the dampening in sample G rela-
tive to pure galena. The first derivative LCF to the Pb XANES corre-
lates with that of the EXAFS, albeit with a lower component sum in
the EXAFS. Lead carbonate phases may have been present in oxi-
dized portions of the ore body or may have formed at the time of
deposition as the result of exposure to high pH conditions, from
the addition of CaO, during flotation (Schlesinger and King,
2011). The lack of carbonate at depths shallower than 180 cm is
taken to indicate that PbCO3 was present in the original mine
wastes and was not diagenetic in the weathering profile.
Equilibrium modeling of the Pb system, with (Pb) = 10�6 M, indi-
cates that at low fO2 (low Eh) for all ranges of pH (0–14), galena
is the predicted stable species (Fig. 10).

At circumneutral pH, and with (HCO3
�) = 10�3.5 M, Pb carbonate

is expected to precipitate as cerussite at Eh > 0 mV (Fig. 10).
Modeling suggests cerussite is metastable with respect to pH,
and equilibrium modeling predicts a narrow pH range of stability
(6 < pH < 8). This Pb species is, therefore, consistent with the XAS
results, geochemical modeling, and the relatively large pool of
AAc extractible Pb at the deepest horizon.

Lead was mostly unextracted in the SSE (86–92%) in intermedi-
ate tailings, with the largest pool liberated in the AAO extraction
(5–12%) targeting reducible poorly crystalline Fe, Al, and Mn oxi-
des, indicating the co-association of Pb with iron (oxy)hydroxides.
The CBD extraction, targeting reducible crystalline Fe, Al, and Mn
oxides, including plumbojarosite, only liberated 2–5% Pb.
Plumbojarosite, the dominant Pb-bearing phase in samples A–F
by XAS, has been shown to not dissolve as expected in extractions
(Frau et al., 2009; Hayes et al., 2012), partitioning from the solid
phases in subsequent extractions (Bacon and Davidson, 2008), or
the formation of insoluble Pb (oxalate) phases during extraction,
inhibiting Pb release in subsequent steps (Hayes et al., 2009 and
refs. therein). Thus, the large pool of unextracted Pb in intermedi-
ate and surficial samples is likely due to poor plumbojarosite dis-
solution in the CBD extraction.

In the surficial zone, spectroscopic investigation demonstrates
Pb is present exclusively as plumbojarosite (sample A) and
mixed with a minor amount of Pb associated with Fe hydroxides
in samples B and C (Fig. 4). Plumbojarosite EXAFS spectra have
diagnostic features at k = 5 (Å�1) and 7.5 (Å�1) and the ampli-
tude from k = 4–9 (Å�1) increases with proximity to the surface
from C to A due to effective damping due to the low amplitude
of the Pb-iron oxide spectra and potentially from an increasingly
ordered plumbojarosite. These results, confirmed by l-XRF and
l-XANES, show the presence of Fe, S, and Pb rich grains, consis-
tent with plumbojarosite (Figs. 6 and 7, Table 5). Interestingly,
no evidence of bioaccessible anglesite, which has been reported
in semi-arid mine tailings, was observed in the SSE or XAS data
for the IKHMSS system.

The sequestration of lead in plumbojarosite, a robust phase
with sparing bioaccessibility, is an effective mechanism of reduc-
ing the environmental risk of Pb exposure. The solubility of
plumbojarosite (logKsp = �18.3 to �22.84, Chapman et al., 1983;
Kashkay et al., 1975) controls Pb transport in the oxic zone of the
tailings, and it is several orders of magnitude lower than that of
jarosite (logKsp = �9 to �12, Bigham et al., 1996; Kashkay et al.,
1975). Lead arsenic jarosites (Fig. 7), have a reported solubility
(logKsp = �13.94) between jarosite and plumbojarosite and this
phase is a candidate for long term immobilization of As5+ and
Pb2+ (Forray et al., 2013). The increased stability of plumbojarosite
relative to jarosite suggests that the plumbojarosite predominance
field would extend to higher pH values. Thermodynamic analysis
does not consider kinetic processes; however, the co-existence of
ferrihydrite and plumbo-jarosite is possible at equilibrium under
conditions found in oxidized mine tailings.
4.3. Zinc weathering

In the deepest tailings investigated (180 cm), 32% of Zn was
released in the AAc extraction, indicating the presence of carbonate
species, and 31% in the AAO extraction. However, the XANES only
indicate the presence of ZnS (Fig. 5) and the spectral fingerprint
of Zn reference minerals sphalerite and smithsonite demonstrate
unique features in the main edge position (D 2 eV) and post edge
structure (9670–9685 eV) that should allow unambiguous charac-
terization. This may be attributed to transformation of ZnS during
the SSE, which was not carried out under anoxic conditions.

Through the transition zone, samples F, E and D showed AAc
extractable Zn decreased with proximity to the surface, 36%, 16%,
and 14% respectively. This was consistent with the presence of
meta-stable smithsonite, which was clearly identified in the Zn
XANES, and upward acidification of the tailings. Other Zn-bearing
phases identified in the transition zone included ZnS (samples F–
D), and Zn-associated with Fe hydroxides (samples D–E). These
results are consistent with progressive oxidative weathering in
the transition zone.

Specific sequential extractions from the near-surface oxidized
samples indicated three Zn-hosting phases, water soluble Zn-sul-
fate (13–40%); Zn associated with amorphous iron hydroxide
(15–26%), and Zn extracted with CBD, associated with jarosite
(7–49%). Extractions were consistent with spectroscopic analysis
for sample A; Zn was fit to 30% ZnSO4�nH2O, confirming the preva-
lence of a very soluble, bioaccessible, and phytotoxic species. The
observed Zn supergene at and below the redox boundary
(4.2 � enrichment over surficial concentrations), combined with
the presence of a soluble Zn efflorescent salt at the surface indicate
Zn migration both up and down in the tailings profile, likely driven
by seasonal hydraulic forces. Soluble salts associated with mine
wastes have been reported during dry periods in most climates;
however, they are more persistent in arid regions (Bandy, 1938;
Hayes et al., 2012; Jambor et al., 2000; Meza-Figueroa et al.,
2009). These frequently occur in the form of ASO4�xH2O, where A
is generally a divalent cation such as: Mg, Ca, Fe, Cu and Zn with
the general solubility of the divalent hydrated acid sulfates follow-
ing the trend Ca > Cu > Fe > Mg > Zn.
5. Conclusions

Dynamic geochemical conditions in mine wastes develop as
sulfide minerals are exposed to atmospheric conditions, with rates
of reaction front propagation being mainly controlled by fO2 and
hydraulic through flux (percolation downward and capillary rise).
Oxidative weathering of sulfide minerals is a function of parent
lithology (including the types of sulfides and associated neutraliz-
ing minerals), climate, and associated microbial activity. The devel-
oped gossan and redox gradient control, to a great extent, the
lability of toxic metal(loid)s. This investigation of metal(loid) spe-
ciation across the reaction front, combined with a companion
investigation of Fe and S speciation (Hayes et al., 2014), serves as
a comprehensive mineralogical and geochemical study of weather-
ing of sulfidic mine tailings under semi-arid climate forcing.

Upon exposure to O2, oxidative weathering releases As, Pb, and
Zn from the parent sulfides arsenopyrite, galena, and sphalerite,
and incorporates these elements into secondary minerals and sorp-
tion complexes of carbonates, (hydr)oxides and (hydroxy)sulfates
with a concurrent increase in acidity. By probing speciation with
X-ray absorption spectroscopy along the depth-dependent reaction
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front in the top two meters of tailings, we resolved the transforma-
tion of PbS(s) to initially form metastable Fe (oxyhydr)oxide
adsorbed Pb species (intermediate in profile), with subsequent
incorporation of Pb into stable plumbojarosite in the highly weath-
ered surface tailings. Zinc released from sphalerite weathering was
initially incorporated into metastable ZnCO3 and Fe (oxyhydr)ox-
ide adsorbed species prior to retention in thermodynamically
favored ZnSO4 and adsorption complexes with jarosite. Arsenic
speciation revealed dominantly a transition from arsenopyrite in
initial parent tailings to arsenate adsorbed in inner-sphere com-
plexes with the surfaces of secondary Fe (oxyhydr)oxides and jar-
osites. Hence, the mobility, and hazardous risk, of toxic elements
from tailings impoundments in semi-arid regions is controlled by
the speciation of secondary minerals and solid phases involved in
surface complexation.

The lability of toxic metals is principally driven via mechanisms
of (i) continuous-daily wind and (ii) infrequent-seasonal flash
flooding. Predicting toxic exposure is best assessed by understand-
ing speciation and bioaccessibility, which is controlled by the
weathering trajectory of the parent mineralogy. Off-site transport
is largely influenced by particle size and solubility of secondary
minerals, which is a function of speciation and deposition environ-
ment controlled by the redox gradient from oxic to sulfidic (surface
to depth), pH gradient form very acidic to neutral (surface to
depth), and moisture gradient from dry to wet (surface to depth).
This report will assist predictions of complex geomicrobiological
interaction in managed mine tailings.
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