245 research outputs found

    What is the most ecologically-meaningful metric of nitrogen deposition?

    Get PDF
    Nitrogen (N) deposition poses a severe risk to global terrestrial ecosystems, and managing this threat is an important focus for air pollution science and policy. To understand and manage the impacts of N deposition, we need metrics which accurately reflect N deposition pressure on the environment, and are responsive to changes in both N deposition and its impacts over time. In the UK, the metric typically used is a measure of total N deposition over 1–3 years, despite evidence that N accumulates in many ecosystems and impacts from low-level exposure can take considerable time to develop. Improvements in N deposition modelling now allow the development of metrics which incorporate the long-term history of pollution, as well as current exposure. Here we test the potential of alternative N deposition metrics to explain vegetation compositional variability in British semi-natural habitats. We assembled 36 individual datasets representing 48,332 occurrence records in 5479 quadrats from 1683 sites, and used redundancy analyses to test the explanatory power of 33 alternative N metrics based on national pollutant deposition models. We find convincing evidence for N deposition impacts across datasets and habitats, even when accounting for other large-scale drivers of vegetation change. Metrics that incorporate long-term N deposition trajectories consistently explain greater compositional variance than 1–3 year N deposition. There is considerable variability in results across habitats and between similar metrics, but overall we propose that a thirty-year moving window of cumulative deposition is optimal to represent impacts on plant communities for application in science, policy and management

    Scotland’s biodiversity progress to 2020 Aichi Targets:Conserving genetic diversity- development of a national approach for addressing Aichi Biodiversity Target 13 that includes wild species

    Get PDF
    Aichi Target 13 (T13) focuses on the conservation of genetic diversity. •Major challenges in implementing T13 are that the type of genetic diversity to conserve is not clearly defined, and that key issues in genetic conservation vary across different sectors (e.g., forestry vs agriculture vs other species of socio-economic importance). •In Scotland and the UK more widely, baseline mechanisms are well established for assessing and reporting on genetic diversity in species of agricultural importance (e.g., rare livestock breeds, crop wild relatives), and a methodology has been established for ornamental plants. •A new UK Strategy for Forest Genetics Resources was launched in 2019, creating a framework for linking forest trees into T13 reporting. •However, there is no clear strategy to deal with ‘other species of socio-economic importance’ in Scotland, the UK or indeed elsewhere, and addressing this gap is the major focus of this report. •There is a lack of guidance for identifying focal species of socio-economic importance, and no clear mechanism for addressing T13 for these species once they have been identified. •To address this, we have identified a set of criteria for defining terrestrial and freshwater species of socio-economic importance in Scotland, and selected an initial list of 26 species. •The criteria applied were: -National conservation priority wild species. -Species of national cultural importance. -Species providing key ecosystem services. -Species of importance for wild harvesting (food and medicine). -Economically important game species. •We then developed a simple, readily applicable scorecard method for assessing risks to the conservation of genetic diversity in these species. •The scorecard approach is not dependent on prior genetic knowledge, and instead uses structured expert opinion assessments of whether: -Demographic declines are likely to lead to loss of genetic diversity (genetic erosion). -Hybridisation is likely to lead to undesirable replacement of genetic diversity. -Restrictions to regeneration/turnover are likely to impede evolutionary change. •For plant species where seed-banking is a viable mechanism for holding genetic resources ex situ,we also report on the representativeness of these ex situ collections. •Overall, this scorecard provides a mechanism for incorporating ‘other species of socio-economic importance’ into T13 actions and reporting. •Furthermore, its application is not restricted to Aichi T13 as the approach is designed as a generic scorecard for genetic diversity. It is thus relevant to post-2020 CBD targets focusing on genetic diversity. •Future priorities include: -Extension to other species of socio-economic, commercial and cultural importance (with the inclusion of marine species being a particularly high priority). -Harmonising genetic conservation strategies between sectors (drawing on commonalities), whilst minimising disruption of existing well-established methodologies within sectors. -Greater incorporation of genomic data into monitoring genetic diversity (particularly in the agricultural and forestry sectors where data availability is potentially high)

    Understanding carbon sequestration in upland habitats

    Get PDF
    This project set out to review the current state of knowledge on the potential for carbon sequestration in key Scottish upland open habitats. Upland soils play a vital role in regulating greenhouse gas (GHG) emissions in our environment. Scotland’s soils contain 2500-3500 Mt of carbon, much of which is located in upland soil environments. This quantity of carbon is the equivalent of more than 200 years of annual emissions of greenhouse gases from the whole Scottish economy. To achieve Scotland’s ambitious net-zero emissions targets, sound management of uplands and their soils will thus be critical. Despite the potential of soils to store carbon, however, there is uncertainty as to the long-term stability of this carbon pool. Increasing temperatures, altered patterns of rainfall distribution and changes in land use threaten to reduce soil carbon stocks. This review identifies the key drivers of change such as: climate change; nitrogen deposition; changes in atmospheric carbon dioxide concentrations; and local land management factors such as grazing by sheep and deer, and burning to maintain habitat and vegetation quality for grazing animals and grouse. It covers three upland habitats: upland dry heath, upland wet heath and upland grasslands, defined by vegetation communities. It assesses potential greenhouse gas (GHG) fluxes and the impact on biodiversity within these habitats
    corecore