194 research outputs found

    Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development

    Get PDF
    Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self-renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro-or anti-tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management

    Nanosilver: Propriedades, Aplicações e Impactos na Saúde Pública e Meio Ambiente

    Get PDF
    Nanotechnology has developed rapidly in the last decade as a multidisciplinary field, with a myriad of applications in strategic areas including energy, electronics, medicine, biotechnology, among others. In modern days, the high commercial demand of silver nanoparticles (NPAg), in particular, has motivated a broad debate in the scientific community. This review gives a brief survey of the applications, commercialization and possible impacts of NPAg to human health and environment, with focus on their toxicity, transformation, and bioavailability. We also present a description of the current international laws and regulations regarding commercialization of nanomaterials.A nanotecnologia se desenvolveu rapidamente durante a última década, com aplicações em éreas estratégicas incluindo saúde, energia, eletrônica, entre outras. Atualmente, a nanotecnologia possui um campo de atuação multidisciplinar, sendo o desenvolvimento e utilização de nanopartículas um dos mais importantes campos de aplicação. A alta demanda comercial das nanopartículas de prata (NPAg) e o aumento dos riscos destes compostos de alcançarem os diferentes ecossistemas e assim, causar impacto nesses ambientes e na saúde humana, tem provocado amplo debate na comunidade científica. A presente revisão faz um breve levantamento do impacto ambiental das NPAg, como transformação, biodisponibilidade e toxicidade e suas consequências para saúde pública, além de uma descrição sobre a atual legislação internacional

    Human adipose CD34+CD90+stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues

    Get PDF
    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34-CD90-cells and was able to differentiate in vitro into adipocytes (PPAR\u3b3+and adiponectin+) and endothelial cells (CD31+VEGF+Flk1+). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34+/CD90+stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34+/CD90 ASCs are extremely useful for regenerative medicine

    Vitamin d deficiency induces chronic pain and microglial phenotypic changes in mice

    Get PDF
    The bioactive form of vitamin .D, 1,25‐dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2‐ 3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive—activated and proliferative—phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased β‐galactosidase (B‐gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator‐activated‐receptor‐alpha (PPAR‐α), reduced most of these effects. Morphological analysis of ex‐vivo microglia obtained from vitamin‐D‐deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D

    Severity of oxidative stress and inflammatory activation in end-stage heart failure patients are unaltered after 1 month of left ventricular mechanical assistance

    Get PDF
    This study investigates the impact of early left ventricular (LV)-mechanical unloading on systemic oxidative stress and inflammation in terminal heart failure patients and their impact both on multi organ failure and on intensive care unit (ICU) stay. Circulating levels of urinary 15-isoprostane-F2t (8-epi-PGF2a) and pro-inflammatory markers [plasma interleukin (IL)-6, IL-8, and urinary neopterin, a monocyte activation index] were analyzed in 20 healthy subjects, 22 stable end-stage heart failure (ESHF) patients and in 23 LV assist device (LVAD) recipients at pre-implant and during first post-LVAD (PL) month. Multiorgan function was evaluated by total Sequential Organ Failure Assessment (tSOFA) score. In LVAD recipients the levels of oxidative-inflammatory markers and tSOFA score were higher compared to other groups. After device implantation 8-epi-PGF2a levels were unchanged, while IL-6, and IL-8 levels increased during first week, and at 1 month returned to pre-implant values, while neopterin levels increased progressively during LVAD support. The tSOFA score worsened at 1 PL-week with respect to pre-implant value, but improved at 1 PL-month. The tSOFA score related with IL-6 and IL-8 levels, while length of ICU stay related with pre-implant IL-6 levels. These data suggest that hemodynamic instability in terminal HF is associated to worsening of systemic inflammatory and oxidative milieu that do not improve in the early phase of hemodynamic recovery and LV-unloading by LVAD, affecting multi-organ function and length of ICU stay. This data stimulate to evaluate the impact of inflammatory signals on long-term outcome of mechanical circulatory support

    Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications

    Get PDF
    Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases

    Association of pre-operative interleukin-6 levels with Interagency Registry for Mechanically Assisted Circulatory Support profiles and intensive care unit stay in left ventricular assist device patients

    Get PDF
    BACKGROUND: Inflammatory mechanisms are associated with worse prognosis in end-stage heart failure (ESHF) patients who require left ventricular assist device (LVAD) support. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) profiles describe patient condition at pre-implant and outcome. This study assessed the relationship among inflammation patterns and INTERMACS profiles in LVAD recipients. METHOD: Thirty ESHF patients undergoing LVAD implantation as bridge to transplant were enrolled. Blood and urine samples were collected pre-operatively and serially up to 2 weeks post-operatively for assessment of inflammatory markers (plasma levels of interleukin [IL]-6, IL-8, IL-10, and osteopontin, a cardiac inflammatory-remodeling marker; and the urine neopterin/creatinine ratio, a monocyte activation marker). Multiorgan function was evaluated by the total sequential organ failure assessment (tSOFA) score. Outcomes of interest were early survival, post-LVAD tSOFA score, and intensive care unit (ICU) length of stay. RESULTS: Fifteen patients had INTERMACS profiles 1 or 2 (Group A), and 15 had profiles 3 or 4 (Group B). At pre-implant, only IL-6 levels and the IL-6/IL-10 ratio were higher in Group A vs B. After LVAD implantation, neopterin/creatinine ratio and IL-8 levels increased more in Group A vs B. Osteopontin levels increased significantly only in Group B. The tSOFA score at 2 weeks post-LVAD and ICU duration were related with pre-implant IL-6 levels. CONCLUSIONS: The INTERMACS profiles reflect the severity of the pre-operative inflammatory activation and the post-implant inflammatory response, affecting post-operative tSOFA score and ICU stay. Therefore, inflammation may contribute to poor outcome in patients with severe INTERMACS profile

    Adolescent conflict and young adult couple relationships: Directionality of violence

    Get PDF
    Indexación: Scopus.The objective of this research was to study victimization and aggression in adolescent and young couple relationships, as well as to identify the directionality of violence perpetration in a sample of 984 people between 15 and 31 years of age, of which 58.2% were women and 41.8% were men. Regarding the educational level of the population under study, 26% were students of junior high school, senior high school, or vocational training and 56.5% were college students. The research design followed the nonprobability purposive sampling method and used the DVQ-R questionnaire. The results suggest that violence is 65.2% bidirectional and 14.30% unidirectional, being bidirectionality more frequent in psychological violence and decreasing when physical violence occurs. The results reveal the need to integrate the different modalities of dating violence (unidirectional and bidirectional) and unperceived violence-that gives rise to technical abuse-into the different prevention programs addressed to adolescents and youth.https://revistas.usb.edu.co/index.php/IJPR/article/view/436
    corecore