175 research outputs found

    New insights into the dynamics of the glutathione-ascorbate redox system of plants

    Get PDF
    The Hallilwell-Asada-Foyer redox cascade (HAF) is viewed as a H2O2 detoxifying system with a great variety of responses against environmental changes. The functional consequences of these responses are interpreted intuitively because a systemic analysis of the inherent dynamic potential of the HAF is lacking. With the help of numerical modelling we show that in wheat roots parameter patterns are established which result in homeostatic states of HAF over a vast range of environmental changes. The reduced fractions glutathione (GSH) and ascorbate (ASC) remain on high levels even during dramatic changes in the enzyme activity ratios of glutathione reductase, dehydroascorbate reductase and ascorbat peroxidase. Necessarily their oxidised counterparts dithioglutathione (GSSG) and dehydroascorbate (DHA) stay in these buffered regions on very low concentration levels. Our modelling shows that redox ratios GSH/GSSG and ASC/DHA can be modified additionally via changes in NADPH/H2O2 ratios. Thus, the redox states of GSH and ASC can not simply be regarded as indicators for oxidative stress with respect to H2O2 levels. The involvement of the redox variables in other redox processes than the HAF reaction (redox proteome) and / or their utilisation in metabolism (protein modification, detoxification of xenobiotics) are viewed to cause system relaxations of the redox variables. The re-establishment of their homeostatic ratios follow time courses which are redox moiety specific and are balanced according to the existing parameter patterns. Despite of its detoxification function the HAF balances the glutathione / ascorbate redox state in cells according to the prevailing physiological conditions

    Tyrosine Phosphorylation in the C-Terminal Nuclear Localization and Retention Signal (C-NLS) of the EWS Protein

    Get PDF
    Ewing sarcoma (EWS) proto-oncoprotein, an RNA-binding protein, is involved in DNA recombination and repair, gene expression, RNA processing and transport, as well as cell signalling. Chimeric EWS oncoproteins generated by chromosomal translocations between EWSR1 and the genes of transcription factors cause malignant tumors. To understand the loss of function by these translocations, the role of the intact EWS protein has to be investigated. The predominantly nuclear localization of the EWS protein via a transportin-1-mediated mechanism is dependent on the recently identified C-NLS (also known as PY-NLS). Among other residues in the C-NLS, Y656 interacts with transportin-1 and is essential for its nuclear localization. Here, we show that Y656 is phosphorylated, which seems to be a critical factor for transportin-1-mediated nuclear import. If Y656 was mutated cytosolic aggregates of the EWS protein, colocalized with transportin-1, were observed, similar to those described with mutants of the closely related FUS/TLS protein that had amino acid substitutions in the PY-NLS causing familial amyothrophic lateral sclerosis

    Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC

    Get PDF
    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Å resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability

    A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage

    Get PDF
    The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity

    Resolving the Role of Plant Glutamate Dehydrogenase. I. in vivo Real Time Nuclear Magnetic Resonance Spectroscopy Experiments

    Get PDF
    In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time 15N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [15N]Glu or 15NH4+ respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants

    PMeS: Prediction of Methylation Sites Based on Enhanced Feature Encoding Scheme

    Get PDF
    Protein methylation is predominantly found on lysine and arginine residues, and carries many important biological functions, including gene regulation and signal transduction. Given their important involvement in gene expression, protein methylation and their regulatory enzymes are implicated in a variety of human disease states such as cancer, coronary heart disease and neurodegenerative disorders. Thus, identification of methylation sites can be very helpful for the drug designs of various related diseases. In this study, we developed a method called PMeS to improve the prediction of protein methylation sites based on an enhanced feature encoding scheme and support vector machine. The enhanced feature encoding scheme was composed of the sparse property coding, normalized van der Waals volume, position weight amino acid composition and accessible surface area. The PMeS achieved a promising performance with a sensitivity of 92.45%, a specificity of 93.18%, an accuracy of 92.82% and a Matthew’s correlation coefficient of 85.69% for arginine as well as a sensitivity of 84.38%, a specificity of 93.94%, an accuracy of 89.16% and a Matthew’s correlation coefficient of 78.68% for lysine in 10-fold cross validation. Compared with other existing methods, the PMeS provides better predictive performance and greater robustness. It can be anticipated that the PMeS might be useful to guide future experiments needed to identify potential methylation sites in proteins of interest. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PMeS.aspx

    The HPV E6 oncoprotein targets histone methyltransferases for modulating specific gene transcription

    Get PDF
    Expression of viral proteins causes important epigenetic changes leading to abnormal cell growth. Whether viral proteins directly target histone methyltransferases (HMTs), a key family enzyme for epigenetic regulation, and modulate their enzymatic activities remains elusive. Here we show that the E6 proteins of both low-risk and high-risk human papillomavirus (HPV) interact with three coactivator HMTs, CARM1, PRMT1 and SET7, and downregulate their enzymatic activities in vitro and in HPV-transformed HeLa cells. Furthermore, these three HMTs are required for E6 to attenuate p53 transactivation function. Mechanistically, E6 hampers CARM1- and PRMT1-catalyzed histone methylation at p53-responsive promoters, and suppresses the binding of p53 to chromatinized DNA independently of E6-mediated p53 degradation. p53 pre-methylated at lysine-372 (p53K372 mono-methylation) by SET7 protects p53 from E6-induced degradation. Consistently, E6 downregulates p53K372 mono-methylation and thus reduces p53 protein stability. As a result of the E6-mediated inhibition of HMT activity, expression of p53 downstream genes is suppressed. Together, our results not only reveal a clever approach for the virus to interfere with p53 function, but also demonstrate the modulation of HMT activity as a novel mechanism of epigenetic regulation by a viral oncoprotein
    corecore