174 research outputs found

    Bat conservation and zoonotic disease risk: a research agenda to prevent misguided persecution in the aftermath of COVID-19

    Get PDF
    Letter to the EditorCOVID-19 has spread around the globe, with massive impacts on global human health, national economies and conservation activities. In the timely editorial about conservation in the maelstrom of COVID-19, Evans et al. (2020) urged the conservation community to collaborate with other relevant sectors of society in the search for solutions to the challenges posed by the current pandemic, as well as future zoonotic outbreaks. Considering the association of COVID 19 with bats (Zhou et al., 2020), bat conservationists will undoubtedly be key actors in this dialogue, and thus an action plan on how best to adjust bat conservation to this new reality, alongside a transdisciplinary research agenda, are clear prioritiesinfo:eu-repo/semantics/publishedVersio

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Head Circumference of Infants Born to Mothers with Different Educational Levels; The Generation R Study

    Get PDF
    Objective: Head circumference (HC) reflect growth and development of the brain in early childhood. It is unknown whether socioeconomic differences in HC are present in early childhood. Therefore, we investigated the association between socioeconomic position (SEP) and HC in early childhood, and potential underlying factors. Methods: The study focused on Dutch children born between April 2002 and January 2006 who participated in The Generation R Study, a population-based prospective cohort study in Rotterdam, the Netherlands. Maternal educational level was used as indicator of SEP. HC measures were concentrated around 1, 3, 6 and 11 months. Associations and explanatory factors were investigated using linear regression analysis, adjusted for potential mediators. Results: The study included 3383 children. At 1, 3 and 6 months of age, children of mothers with a low education had a smaller HC than those with a high education (difference at 1 month: -0.42 SD; 95% CI: -0.54,-0.30; at 3 months: -0.27 SD; 95% CI -0.40,-0.15; and at 6 months: -0.13 SD; 95% CI -0.24,-0.02). Child's length and weight could only partially explain the smaller HC at 1 and 3 months of age. At 6 months, birth weight, gestational age and parental height explained the HC differences. At 11 months, no HC differences were found. Conclusion: Educational inequalities in HC in the first 6 months of life can be mainly explained by pregnancy-related factors, such as birth weight and gestational age. These findings further support public health policies to prevent negative birth outcomes in lower socioeconomic groups

    In vitro analysis of the effects on wound healing of high- and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes

    Get PDF
    Abstract Background: Recent studies have reported the roles of Hyaluronic acid (HA) chains of diverse length in wound repair, especially considering the simultaneous occurrence in vivo of both high- (H-HA) and low-molecular weight (L-HA) hyaluronan at an injury site. It has been shown that HA fragments (5 ≀ MW ≀ 20 kDa) usually trigger an inflammatory response that, on one hand, is the first signal in the activation of a repair mechanism but on the other, when it’s overexpressed, it may promote unwanted side effects. The present experimental research has aimed to investigate H-HA, L-HA and of a newly developed complex of the two (H-HA/L-HA) for stability (e.g. hyaluronidases digestion), for their ability to promote wound healing of human keratinocytes in vitro and for their effect on cellular biomarker expression trends. Results: Time-lapse video microscopy studies proved that the diverse HA was capable of restoring the monolayer integrity of HaCat. The H-HA/L-HA complex (0.1 and 1%w/v) proved faster in regeneration also in co-culture scratch test where wound closure was achieved in half the time of H-HA stimulated cells and 2.5-fold faster than the control. Gene expression was evaluated for transformation growth factor beta 1 (TGF-ÎČ1) proving that L-HA alone increased its expression at 4 h followed by restoration of similar trends for all the stimuli. Depending on the diverse stimulation (H-HA, L-HA or the complex), metalloproteinases (MMP-2, -9, -13) were also modulated differently. Furthermore, type I collagen expression and production were evaluated. Compared to the others, persistence of a significant higher expression level at 24 h for the H-HA/L-HA complex was found. Conclusions: The outcomes of this research showed that, both at high and low concentrations, hybrid complexes proved to perform better than HA alone thus suggesting their potential as medical devices in aesthetic and regenerative medicine. Keywords: Wound healing, Hyaluronan, MMPs, Hybrid complexe

    Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

    Full text link
    Biodiversity is rapidly declining1, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes4 across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (Ï„Îœ and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch

    Full text link
    • 

    corecore