21 research outputs found

    Dispersal and reproductive careers of male mountain gorillas in Bwindi Impenetrable National Park, Uganda

    Get PDF
    Dispersal is a key event in the life of an animal and it influences individual reproductive success. Male mountain gorillas exhibit both philopatry and dispersal, resulting in a mixed one-male and multimale social organization. However, little is known about the relationship between male dispersal or philopatry and reproductive careers in Bwindi mountain gorillas. Here we analyze data spanning from 1993 to 2017 on social groups in Bwindi Impenetrable National Park, Uganda to examine the proportion of males that disperse, age of dispersal, pathways to attaining alpha status, fate of dispersing males and philopatric males, and male tenure length as well as make comparisons of these variables to the Virunga mountain gorilla population. We report previously undocumented cases of dispersal by immature males and old males and we also observed the only known case of a fully mature male immigrating into a breeding group. We used genetic tracking of known individuals to estimate that a minimum of 25% of males that disperse to become solitary males eventually form new groups. No differences were found between the Bwindi and Virunga population in the age of male dispersal, the proportion of males that disperse, the age of alpha male acquisition, and dominance tenure length. The lack of differences may be due to small sample sizes or because the observed ecological variability does not lead to life history differences between the populations. Males in both populations follow variable strategies to attain alpha status leading to the variable one-male and multimale social organization, including dispersal to become solitary and eventually form a group, via group fissioning, usurping another alpha male, or inheriting the alpha position when a previous group leader dies

    Individual dispersal decisions affect fitness via maternal rank effects in male rhesus macaques

    Get PDF
    Natal dispersal may have considerable social, ecological and evolutionary consequences. While speciesspecific dispersal strategies have received much attention, individual variation in dispersal decisions and its fitness consequences remain poorly understood. We investigated causes and consequences of natal dispersal age in rhesus macaques (Macaca mulatta), a species with male dispersal. Using long-term demographic and genetic data from a semi-free ranging population on Cayo Santiago, Puerto Rico, we analysed how the social environment such as maternal family, group and population characteristics affected the age at which males leave their natal group. While natal dispersal age was unrelated to most measures of group or population structure, our study confirmed earlier findings that sons of high-ranking mothers dispersed later than sons of low-ranking ones. Natal dispersal age did not affect males\\\'' subsequent survival, but males dispersing later were more likely to reproduce. Late dispersers were likely to start reproducing while still residing in their natal group, frequently produced extra-group offspring before natal dispersal and subsequently dispersed to the group in which they had fathered offspring more likely than expected. Hence, the timing of natal dispersal was affected by maternal rank and influenced male reproduction, which, in turn affected which group males dispersed to

    Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    No full text
    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer
    corecore