328 research outputs found

    Genetically-controlled Vesicle-Associated Membrane Protein 1 expression may contribute to Alzheimer’s pathophysiology and susceptibility

    Get PDF
    Background Alzheimer’s disease is a neurodegenerative disorder in which extracellular deposition of β-amyloid (Aβ) oligomers causes synaptic injury resulting in early memory loss, altered homeostasis, accumulation of hyperphosphorylated tau and cell death. Since proteins in the SNAP (Soluble N-ethylmaleimide-sensitive factor Attachment Protein) REceptors (SNARE) complex are essential for neuronal Aβ release at pre-synaptic terminals, we hypothesized that genetically controlled SNARE expression could alter neuronal Aß release at the synapse and hence play an early role in Alzheimer’s pathophysiology. Results Here we report 5 polymorphisms in Vesicle-Associated Membrane Protein 1 (VAMP1), a gene encoding a member of the SNARE complex, associated with bidirectionally altered cerebellar VAMP1 transcript levels (all p < 0.05). At the functional level, we demonstrated that control of VAMP1 expression by heterogeneous knockdown in mice resulted in up to 74% reduction in neuronal Aβ exocytosis (p < 0.001). We performed a case-control association study of the 5 VAMP1 expression regulating polymorphisms in 4,667 Alzheimer’s disease patients and 6,175 controls to determine their contribution to Alzheimer’s disease risk. We found that polymorphisms associated with increased brain VAMP1 transcript levels conferred higher risk for Alzheimer’s disease than those associated with lower VAMP1 transcript levels (p = 0.03). Moreover, we also report a modest protective association for a common VAMP1 polymorphism with Alzheimer’s disease risk (OR = 0.88, p = 0.03). This polymorphism was associated with decreased VAMP1 transcript levels (p = 0.02) and was functionally active in a dual luciferase reporter gene assay (p < 0.01). Conclusions Genetically regulated VAMP1 expression in the brain may modify both Alzheimer’s disease risk and may contribute to Alzheimer’s pathophysiology

    Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease

    Get PDF
    We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function

    Development of Useful Recombinant Promoter and Its Expression Analysis in Different Plant Cells Using Confocal Laser Scanning Microscopy

    Get PDF
    BACKGROUND: Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS: We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE: We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells

    Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    Get PDF
    The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis.Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment.NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis

    Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster

    Get PDF
    Autophagy is a highly conserved mechanism for cellular repair that becomes progressively down-regulated during normal ageing. Hence, manipulations that activate autophagy could increase lifespan. Previous reports show that manipulations to the autophagy pathway can result in longevity extension in yeast, flies, worms and mammals. Under standard nutrition, autophagy is inhibited by the nutrient sensing kinase Target of Rapamycin (TOR). Therefore, manipulations of TOR that increase autophagy may offer a mechanism for extending lifespan. Ideally, such manipulations should be specific and minimise off-target effects, and it is important to discover additional methods for ‘clean’ lifespan manipulation. Here we report an initial study into the effect of up-regulating autophagy on lifespan and fertility in Drosophila melanogaster by dietary addition of Torin1. Activation of autophagy using this selective TOR inhibitor was associated with significantly increased lifespan in both sexes. Torin1 induced a dose-dependent increase in lifespan in once-mated females. There was no evidence of a trade-off between longevity and fecundity or fertility. Torin1-fed females exhibited significantly elevated fecundity, but also elevated egg infertility, resulting in no net change in overall fertility. This supports the idea that lifespan can be extended without trade-offs in fertility and suggest that Torin1 may be a useful tool with which to pursue anti-ageing research

    Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    Get PDF
    Background: We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings: We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance: Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells

    CDK5 Is Essential for Soluble Amyloid β-Induced Degradation of GKAP and Remodeling of the Synaptic Actin Cytoskeleton

    Get PDF
    The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca2+ influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss

    Identification of BC005512 as a DNA Damage Responsive Murine Endogenous Retrovirus of GLN Family Involved in Cell Growth Regulation

    Get PDF
    Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512), whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs), but not by non-genotoxins (NGTXs). Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV). However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau
    • …
    corecore