125 research outputs found

    NMR methods to monitor the enzymatic depolymerization of heparin

    Get PDF
    Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998 ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion

    How does the tobacco industry attempt to influence marketing regulations? A systematic review

    Get PDF
    BACKGROUND: The Framework Convention on Tobacco Control makes a number of recommendations aimed at restricting the marketing of tobacco products. Tobacco industry political activity has been identified as an obstacle to Parties' development and implementation of these provisions. This study systematically reviews the existing literature on tobacco industry efforts to influence marketing regulations and develops taxonomies of 1) industry strategies and tactics and 2) industry frames and arguments. METHODS: Searches were conducted between April-July 2011, and updated in March 2013. Articles were included if they made reference to tobacco industry efforts to influence marketing regulations; supported claims with verifiable evidence; were written in English; and concerned the period 1990-2013. 48 articles met the review criteria. Narrative synthesis was used to combine the evidence. RESULTS: 56% of articles focused on activity in North America, Europe or Australasia, the rest focusing on Asia (17%), South America, Africa or transnational activity. Six main political strategies and four main frames were identified. The tobacco industry frequently claims that the proposed policy will have negative unintended consequences, that there are legal barriers to regulation, and that the regulation is unnecessary because, for example, industry does not market to youth or adheres to a voluntary code. The industry primarily conveys these arguments through direct and indirect lobbying, the promotion of voluntary codes and alternative policies, and the formation of alliances with other industrial sectors. The majority of tactics and arguments were used in multiple jurisdictions. CONCLUSIONS: Tobacco industry political activity is far more diverse than suggested by existing taxonomies of corporate political activity. Tactics and arguments are repeated across jurisdictions, suggesting that the taxonomies of industry tactics and arguments developed in this paper are generalisable to multiple jurisdictions and can be used to predict industry activity

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Ecological Guild Evolution and the Discovery of the World's Smallest Vertebrate

    Get PDF
    Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish. Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are not mere oddities, but represent a previously unrecognized ecological guild

    Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    Get PDF
    The ZEUS collaborationThe production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q^2 < 1000 GeV^2 using an integrated luminosity of 354 pb^{−1}. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q^2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q^2. The running beauty-quark mass, m_b at the scale m_b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m_b(m_b) = 4.07 ± 0.14(fit)_{−0.07}^{+0.01}(mod.)_{−0.00}^{+0.05}(param.)_{−0.05}^{+0.08}(theo.)GeV.We appreciate the contributions to the construction, maintenance and operation of the ZEUS detector of many people who are not listed as authors. The HERA machine group and the DESY computing staff are especially acknowledged for their success in providing excellent operation of the collider and the data-analysis environment. We thank the DESY directorate for their strong support and encouragement. It is a pleasure to thank the ABKM, CTEQ, JR and MSTW groups that provided the predictions for F_2^{b\overline{b}} shown in figure 12. We gratefully acknowledge the advice from S. Alekhin and R. Plačakytė concerning the appropriate usage of OPENQCDRAD and HERAFitter. Article funded by SCOAP
    • 

    corecore