1,598 research outputs found

    Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis

    Get PDF
    ObjectiveExercise training has been shown to have beneficial effects on liver function in adults overweight or with fatty liver disease. To establish which exercise programme characteristics were likely to elicit optimal improvements.DesignSystematic review and meta-analysis of randomised, controlled trials.Data sourcesPubMed, CINAHL and Cochrane controlled trials registry searched (1966 to 2 October 2015).Eligibility criteria for selecting studiesExercise intervention, with or without dietary intervention, versus usual care in adults undertaking, exercise training, who were overweight, obese or exhibited fatty liver disease (non-alcoholic fatty liver disease or non-alcoholic steatohepatitis).ResultsWe included 21 randomised controlled trials, totalling 1530 participants. Exercise intervention studies with total exercise programme workload &gt;10 000 kcal produced significant improvements in intrahepatic fat, −3.46% (95% CI −5.20% to −1.73%), p&lt;0.0001, I2=73%; effect size (standardised mean difference, SMD) −1.77 (−3.11 to −0.42), p=0.01, I2=77%. When data from only exercise studies were pooled, there was a reduction in fasting free fatty acids (FFAs) −74.15 µmol/L (95% CI −118.47 to −29.84), p=0.001, I2=67% with a large effect size (SMD) −0.94 (−1.36 to −0.52), p&lt;0.0001, I2=0%. When data from only exercise studies were pooled, there was a significant reduction in insulin MD −1.88 UL (95% CI −3.43 to −0.34), p=0.02, I2=31%. The liver enzymes, alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase, were not significantly altered with exercise.ConclusionsExercise training reduces intrahepatic fat and FFAs while increasing cardiorespiratory fitness. An aggregate exercise programme energy expenditure (&gt;10 000 kcal) may be required to promote reductions in intrahepatic fat.</jats:sec

    On Some Geometric Properties of Slice Regular Functions of a Quaternion Variable

    Full text link
    The goal of this paper is to introduce and study some geometric properties of slice regular functions of quaternion variable like univalence, subordination, starlikeness, convexity and spirallikeness in the unit ball. We prove a number of results, among which an Area-type Theorem, Rogosinski inequality, and a Bieberbach-de Branges Theorem for a subclass of slice regular functions. We also discuss some geometric and algebraic interpretations of our results in terms of maps from R4\mathbb R^4 to itself. As a tool for subordination we define a suitable notion of composition of slice regular functions which is of independent interest

    Understanding the molecular consequences of inherited muscular dystrophies:advancements through proteomic experimentation

    Get PDF
    Introduction: Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity. Areas covered: Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled. Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing

    The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland

    Get PDF
    Glacier surfaces have a surprisingly complex ecology. Cryoconite holes contain diverse invertebrate communities while other invertebrates, such as Collembola often graze on algae and windblown dead organic on the glacier surface. Glacier mice (ovoid unattached moss balls) occur on some glaciers worldwide. Studies of these glacier mice have concentrated on their occurrence and mode of formation. There are no reports of the invertebrate communities. But, such glacier mice may provide a suitable favourable habitat and refuge for a variety of invertebrate groups to colonise the glacier surface. Here we describe the invertebrate fauna of the glacier mice (moss balls) of the Falljökull, Iceland. The glacier mice were composed of Racomitrium sp. and varied in size from 8.0 to 10.0 cm in length. All glacier mice studied contained invertebrates. Two species of Collembola were present. Pseudisotoma sensibilis (Tullberg, 1876) was numerically dominant with between 12 and 73 individuals per glacier mouse while Desoria olivacea (Tullberg, 1871) occurred but in far lower numbers. Tardigrada and Nematoda had mean densities of approximately 200 and 1,000 respectively. No Acari, Arachnida or Enchytraeidae were observed which may be related to the difficulty these groups have in colonizing the glacier mice. We suggest that glacier mice provide an unusual environmentally ameliorated microhabitat for an invertebrate community dwelling on a glacial surface. The glacier mice thereby enable an invertebrate fauna to colonise an otherwise largely inhospitable location with implications for carbon flow in the system

    Author Correction: Progression of whole-blood transcriptional signatures from interferon-induced to neutrophil-associated patterns in severe influenza.

    Get PDF
    In the version of this article initially published, a source of funding was not included in the Acknowledgements section. That section should include the following: P.J.M.O. was supported by EU FP7 PREPARE project 602525. The error has been corrected in the HTML and PDF version of the article

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as NN \to \infty but more slowly than N1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Etiology of Severe Non-malaria Febrile Illness in Northern Tanzania: A Prospective Cohort Study.

    Get PDF
    The syndrome of fever is a commonly presenting complaint among persons seeking healthcare in low-resource areas, yet the public health community has not approached fever in a comprehensive manner. In many areas, malaria is over-diagnosed, and patients without malaria have poor outcomes. We prospectively studied a cohort of 870 pediatric and adult febrile admissions to two hospitals in northern Tanzania over the period of one year using conventional standard diagnostic tests to establish fever etiology. Malaria was the clinical diagnosis for 528 (60.7%), but was the actual cause of fever in only 14 (1.6%). By contrast, bacterial, mycobacterial, and fungal bloodstream infections accounted for 85 (9.8%), 14 (1.6%), and 25 (2.9%) febrile admissions, respectively. Acute bacterial zoonoses were identified among 118 (26.2%) of febrile admissions; 16 (13.6%) had brucellosis, 40 (33.9%) leptospirosis, 24 (20.3%) had Q fever, 36 (30.5%) had spotted fever group rickettsioses, and 2 (1.8%) had typhus group rickettsioses. In addition, 55 (7.9%) participants had a confirmed acute arbovirus infection, all due to chikungunya. No patient had a bacterial zoonosis or an arbovirus infection included in the admission differential diagnosis. Malaria was uncommon and over-diagnosed, whereas invasive infections were underappreciated. Bacterial zoonoses and arbovirus infections were highly prevalent yet overlooked. An integrated approach to the syndrome of fever in resource-limited areas is needed to improve patient outcomes and to rationally target disease control efforts
    corecore