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Abstract. Many real epidemics of an infectious disease are not straight-
forwardly super- or sub-critical, and the understanding of epidemic mod-
els that exhibit such complexity has been identified as a priority for
theoretical work. We provide insights into the near-critical regime by
considering the stochastic SIS logistic epidemic, a well-known birth-and-
death chain used to model the spread of an epidemic within a population
of a given size N .

We study the behaviour of the process as the population size N tends
to infinity. Our results cover the entire subcritical regime, including the
“barely subcritical” regime, where the recovery rate exceeds the infec-
tion rate by an amount that tends to 0 as N → ∞ but more slowly
than N−1/2. We derive precise asymptotics for the distribution of the
extinction time and the total number of cases throughout the subcrit-
ical regime, give a detailed description of the course of the epidemic,
and compare to numerical results for a range of parameter values. We
hypothesise that features of the course of the epidemic will be seen in
a wide class of other epidemic models, and we use real data to provide
some tentative and preliminary support for this theory.

1. Introduction

1.1. Epidemiological motivation. Models of the dynamics of disease spread
are widely used throughout infectious disease epidemiology, and inform an
increasing number of health policy domains (Heesterbeek et al. 2015). Typ-
ically, epidemic models have a quantity called the basic reproduction ratio
R0 such that, if R0 > 1, then the epidemic is supercritical and grows ex-
ponentially and, if R0 < 1, then the epidemic is subcritical and shrinks
exponentially; see for instance Diekmann, Heesterbeek and Britton (2013).

Increasingly, however, epidemiologists are confronted with epidemics where
the dynamics cross the threshold from supercritical to subcritical (see for
instance Klepac et al (2013) and other papers in that journal issue) due
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to control measures, or from subcritical to supercritical due, for example,
to mutation (Antia et al. 2003; Bull and Dykhuizen 2003; Scheffer et al.
2009; O’Regan and Drake 2013), or where the behaviour is not exponential
(Chowell et al. 2016). This has led to the understanding of near-critical
epidemics being highlighted as a key challenge for disease-dynamic models
of infectious diseases (Britton et al. 2015).

In this paper, we are interested in understanding the course of subcrit-
ical epidemics, especially where R0 is close to 1. We shall give a detailed
analytical study of a particularly simple epidemic process, the stochastic
SIS logistic process (also called the SIS model, the contact process, or the
logistic model) in the subcritical regime. In this model, each member of a
population of fixed size N is either susceptible or infective. Infective indi-
viduals encounter a random other member of the population at rate λ, and
infect them if they are susceptible: infective individuals recover at rate µ,
and once recovered they are immediately susceptible again. The state of the
epidemic is effectively determined by the number XN (t) of infectives, or by
the prevalence XN (t)/N , at time t. We defer the formal definitions to the
next section. For most purposes, this process is too simple to reflect the
full behaviour of a real-world epidemic, but it can be suitable for modelling
sexually transmitted and hospital-acquired infections (Eames and Keeling
2002; Ross and Taimre 2007).

In our model, the basic reproduction ratio R0 is equal to λ/µ, and we
are especially interested in the regime where R0 tends to 1 from below as
N tends to infinity. When also (1 − R0)N

1/2 → ∞, we are in the barely
subcritical regime. We note the following features of the typical course of
the epidemic in this regime, all of which distinguish regimes near criticality
from those where R0 is fixed and less than 1. We make the hypothesis that
these features are common to a wide class of epidemic models (not only SIS
models) in barely subcritical regimes. We express our statements in terms
of the basic reproduction ratio R0, the population size N , and a speed
parameter µ, where 1/µ is roughly the expected duration of an individual
case.

• The time to extinction is of order much larger than logN/µ (typically
it is of order logN/µ(1−R0)).

• There is a period of time before extinction, of order 1/µ(1 − R0),
where the number of infectives follows a track resembling a random
walk, remaining of order at most 1/(1−R0) throughout. The dura-
tion of this period is not well-concentrated.

The cut-off phenomenon, in the case of a stochastic epidemic process, is
that the typical time to extinction is much greater than the window of time
over which the probability of extinction goes from near 0 (at this stage,
the number of infectives will typically be larger than 1/(1−R0), but much
smaller than the population size) to near 1. The SIS logistic process ex-
hibits this phenomenon in the subcritical regime, with the expected time
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to extinction around log[N(1 − R0)
2]/µ(1 − R0), and the window where

extinction typically occurs having width of order 1/µ(1−R0): thus cut-off
becomes less pronounced as we approach the critical regime where |1−R0|
is of order at most N−1/2. We hypothesise that this weakening of cut-off is
also a feature of many barely subcritical epidemic processes.

Figure 1 shows three real examples of the courses of epidemics after they
became subcritical due to control efforts. These concern: the recent Ebola
epidemic in Sierra Leone (top plot), smallpox (middle plot), and polio (bot-
tom plot). For all three examples, we superimpose curves showing smooth
decay (in the top plot the curves are solutions of an ODE: in the others,
they are exponential decay curves at various rates r), illustrating that these
provide a poor fit for the observed detailed dynamics of the disease over
time, especially in the end stages of the epidemic (see in particular the right
hand panels in the bottom two plots, which are rescaled versions of the
plots showing the behaviour more clearly). However, at a glance, the plots
do exhibit behaviour very broadly in line with our expectations for a barely
subcritical epidemic. We discuss the data in more detail in Appendix A.

For comparison, Figure 2 shows the behaviour of the stochastic SIS logistic
process for a population of size 106 with 103 initial cases as λ is increased
towards µ = 1 from below. These sample paths are compared to “smooth
decay” curves of the form e(λ−µ)t; the figure illustrates our analytic results
for the model: individual realisations of the stochastic SIS logistic process
deviate significantly from smooth exponential decay in the final stages, and
exhibit the behaviour we described above.

The potential implications of our work for more general epidemic models
are discussed in more detail in Section 9.

Our results on the stochastic SIS logistic process are the first to incor-
porate the barely subcritical regime, where R0 approaches 1 from below
as the population size tends to infinity. We provide analytic methods for
studying the SIS logistic process in the large-population limit, and thereby
obtain precise asymptotic results for the distribution of extinction times and
the total number of infection events. We also give attention to numerical
approaches that are well adapted to the near-critical regime and allow the
exploration of model behaviour at a given value of the population size. We
expect that our methodology can be generalised to apply to other models of
epidemiological and biological interest.

1.2. Technical background and outline of paper. The stochastic SIS
logistic process is defined as follows. Given a “size parameter” N , and two
further parameters λ and µ, let XN = (XN (t))t≥0 be the continuous-time
Markov chain with state space {0, . . . , N}, and transitions as follows:

X → X + 1 at rate λX(1−X/N), (1.1)

X → X − 1 at rate µX.
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This is the most basic stochastic model of the spread of an SIS (susceptible-
infective-susceptible) epidemic within a population of size N . In this con-
text, XN (t) represents the number of infective individuals at time t. Each
infective encounters a random other member of the population at rate λ; if
the other individual is currently susceptible, they become infective. Also,
each infective recovers at rate µ; once they are recovered they become sus-
ceptible again. The stochastic SIS logistic process is also used as a model
for a metapopulation process, where N represents the number of available
patches, XN (t) is the number of patches that are populated at time t, λ rep-
resents the rate at which one existing colony attempts to colonise another
patch, and µ represents the rate at which an entire patch becomes de-
populated due to some catastrophe. The model was first formulated by
Feller (1939), and further studied by Bartlett (1957). It was rediscovered by
Weiss and Dishon (1971), and has since been investigated by many authors.
A recent thorough treatment of the model is the book of N̊asell (2011), who
in particular mentions a number of other application areas and gives a large
list of further references.

Suppose to begin with that λ and µ are fixed constants. The key param-
eter is the ratio λ/µ, which, for a small-scale epidemic, approximates the
basic reproduction ratio R0 of the epidemic, defined as the mean number of
individuals infected by a single infective in a large population of suscepti-
bles. The behaviour of the logistic process is radically different depending
on whether the quantity R0 is greater or less than 1. In the case R0 > 1, the
process typically takes a time exponential in N to die out, spending most of
its duration near to the value (λ− µ)N/λ where the upward and downward
transition rates are equal: this models a supercritical epidemic, where an
initially small number of infectives may generate an outbreak that becomes
endemic in the population for a very long period. In the case R0 < 1, the
process is always drifting downwards, and even an initially very large epi-
demic dies out with high probability in time of order logN . In this paper,
we give precise results about the distribution of the extinction time in this
subcritical case. In the special case R0 = 1, the expected extinction time is
of order

√
N .

To study behaviour in the transition between the supercritical and sub-
critical regimes, we regard λ and µ as functions of the size parameter N ,
and we pay special attention to cases where R0 = λ/µ tends to 1 as N tends
to infinity.

Earlier work (N̊asell 1996; Dolgoarshinnykh and Lalley 2006; Kessler
2008) has demonstrated that there is a critical window for the logistic pro-

cess where |R0 − 1| = O(N−1/2); the change in the nature of the process
occurs as R0 crosses this window. Our main aim in this paper is to give the
distribution of the extinction time throughout the entire subcritical range,
i.e., as long as (1−R0)N

1/2 → ∞. Our results show exactly how the extinc-

tion time changes from order logN to order
√
N as R0 approaches 1 from

below.
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Our results for the case where λ and µ are fixed real numbers with λ < µ
are new, but our main interest is in the case where λ = λ(N) and µ = µ(N)
are functions of N with µ(N) − λ(N) → 0+. We shall always assume that
µ(N) and λ(N) are bounded away from both 0 and∞. We choose to state all
our results in terms of the two parameters λ and µ for ease of comparison to
earlier results: however, apart from a constant factor determining the speed
of the epidemic, all of our results could be restated in terms of R0. Note
that, under our assumptions, 1 − R0 = (µ − λ)/µ is of the same order as
µ− λ, and to say that our sequence of parameter values is in the subcritical
regime means that (µ− λ)N1/2 → ∞.

We also allow the initial state XN (0) to depend on N . One case of natural
interest is where XN (0) ≃ αN for some α ∈ (0, 1], but our results also cover
the case where XN (0)/N → 0. We set TN to be the time to extinction (i.e.,
the hitting time of the absorbing state 0) for XN (t), with infection rate
λ = λ(N), recovery rate µ = µ(N), and initial state XN (0). Our interest is
in the asymptotic distribution of TN , as N → ∞.

There is an exact expression for ETN as a double summation, due to
Weiss and Dishon (1971) in the case where XN (0) = N , and in general to
Leigh (1981) and Norden (1982). The asymptotics of this sum have been
determined in some cases, e.g., by Doering, Sargsyan and Sander (2005).
Our methods give precise information about the distribution of TN , not just
its expectation.

The logistic process is naturally associated with the differential equation

dx

dt
= λx(1− x)− µx = λx(1− µ/λ− x), (1.2)

where x(t) represents the proportion of infective individuals at time t. This
equation was first studied by Verhulst (1838), and it is known as the Ver-
hulst equation or logistic equation. It follows from the general theory of
Kurtz (1971) that, as N → ∞, XN (t)/N is well concentrated around the
solution x(t) of the differential equation (1.2), uniformly over fixed time in-
tervals, as long as XN (0)/N is well approximated by its initial condition
x(0). For our purposes, we need to show concentration for longer periods,
and this is possible thanks to the special structure of the logistic equation
when µ ≥ λ.

The behaviour of the deterministic process x(t) also depends on whether
R0 is greater than, equal to, or less than 1. In the case where λ > µ (i.e.,
R0 > 1), there is a stable fixed point of the drift equation (1.2) at x = 1−µ/λ
(and an unstable fixed point at x = 0). If there are a large number of in-
fective individuals at time 0, then with high probability XN (t)/N heads
rapidly towards the stable fixed point, then spends most of its time in the
neighbourhood of that fixed point, making excursions into the rest of the
state space until eventually one of these excursions reaches the absorbing
state 0. Precise results are known about the distribution of the time to
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extinction, which is exponential in N , and about the quasi-stationary dis-
tribution, which is centred around the stable fixed point of (1.2). See, for
instance: Barbour (1976), Kryscio and Lefèvre (1989), N̊asell (1996), An-
dersson and Djehiche (1998) and the book of N̊asell (2011).

If λ ≤ µ, then the differential equation (1.2) has a single stable fixed
point at x = 0, and all its solutions converge to zero as t → ∞. For the
corresponding Markov chain, it is also known that the epidemic dies out
rapidly with high probability whenever λ and µ are fixed constants with
λ ≤ µ.

Doering, Sargsyan and Sander (2005) give an asymptotic formula for the
mean extinction time, in the case where λ < µ are fixed constants and the
initial state XN (0) is of order N :

ETN =
1

µ− λ
(logN +O(1)). (1.3)

In the case where λ = µ, they obtain:

ETN =
1

λ

[(π
2

)3/2√
N + logN

]
+O(1).

Doering, Sargsyan and Sander (2005) also study the mean time to extinction
starting from a state with a single infective individual, and Kessler (2008)
extends these results to cover the whole of the “transition region”, where
µ− λ is of order N−1/2.

A formula for the asymptotic distribution of the time TN to extinction,
in the case where λ < µ and XN (0)/N tends to a constant, is presented by
Kryscio and Lefèvre (1989) with a heuristic argument, and then reproduced
by Andersson and Djehiche (1998). However, the formula is erroneous. It
was noted by Doering, Sargsyan and Sander (2005) that the formula given
by Kryscio and Lefèvre (1989) and Andersson and Djehiche (1998) is incon-
sistent with their result (1.3), and with their numerical results. As far as
we are aware, no correct explicit formula for the asymptotic distribution of
the time TN to extinction when λ < µ has appeared in the literature, even
in the case where λ and µ are fixed constants. In his book, N̊asell (2011)
identifies two distinct regimes: one “critical regime”, where µ−λ is of order
at most N−1/2, and another (subcritical) where µ − λ is constant or tends

to zero more slowly than N−1/2. For both regimes, N̊asell (2011) poses as
an open problem the determination of the mean extinction time ETN . Our
results have some similarity with Theorem 2(ii) of Sagitov and Shaimerden-
ova (2013), who study the distribution of the extinction time for a different
version of the logistic model in a completely different limit.

Barbour, Hamza, Kaspi and Klebaner (2015) study a very general class
of population models, which includes this one. The distribution of the ex-
tinction time TN , in the case where λ and µ are fixed with λ < µ, can, with
some effort, be derived from their Theorem 1.2. Our results cover the case
of fixed λ and µ, as well as the near-critical case (which Barbour et al (2015)
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do not cover), and our proof for this model is significantly simpler than the
general argument given by Barbour et al (2015).

Here we obtain the asymptotic distribution of TN throughout the sub-
critical regime, for general initial conditions. Our main result is as follows.
We recall that a random variable W has the standard Gumbel distribution
if P(W ≤ w) = e−e

−w
for all w ∈ R. The mean of W is equal to Euler’s

constant γ ≈ 0.5772.

Theorem 1.1. Suppose that µ = µ(N) and λ = λ(N) are bounded away

from both 0 and infinity. Suppose also that (µ − λ)N1/2 → ∞ as N → ∞,
that XN (0) is non-random and that XN (0)(µ− λ) → ∞ as N → ∞. Then,
as N → ∞,

(µ−λ)TN−
(
logN+2 log(µ−λ)− log

(
1+

(µ− λ)N

λXN (0)

)
− logµ− log λ

)
→W,

(1.4)
in distribution, where W is a standard Gumbel variable. Hence, as N → ∞,

ETN =
logN + 2 log(µ− λ)− log

(
1 + (µ−λ)N

λXN (0)

)
− logµ− log λ+ γ + o(1)

µ− λ
.

Observe that

logN+2 log(µ−λ)−log

(
1 +

(µ− λ)N

λXN (0)

)
= − log

(
1

N(µ− λ)2
+

1

λXN (0)(µ− λ)

)
,

which tends to infinity under the hypotheses of the theorem. The remaining
terms, log µ and log λ, in the expression in (1.4) are of constant order, and so
Theorem 1.1 implies that, for any fixed ε > 0, the probability of extinction
before time

(1− ε)
logN + 2 log(µ− λ)− log

(
1 + (µ−λ)N

λXN (0)

)
µ− λ

tends to zero, while the probability of extinction by time

(1 + ε)
logN + 2 log(µ− λ)− log

(
1 + (µ−λ)N

λXN (0)

)
µ− λ

tends to 1. This is an instance of the cut-off phenomenon (see for instance:
Diaconis 1996; Levin, Peres and Wilmer 2009), where, for a Markov chain
(XN (t)), the total variation distance between the distribution of XN (t) and
the stationary distribution moves rapidly from 1 to 0 over a time interval
much smaller than the time to stationarity. In our instance, the support
of the stationary distribution is {0}, so the total variation distance at time
t is the probability that the epidemic is not yet extinct. This probability
goes from near 1 to near 0 over a time interval of length of order 1/(µ− λ),
whereas the expected extinction time, from a large enough initial state, is
of order log[N(µ−λ)2]/(µ−λ). Thus the cut-off phenomenon becomes less
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pronounced as N(µ− λ)2 tends more slowly to infinity, i.e., as we approach
the critical regime. See Figures 3 and 4.

Another point to note is how the expected extinction time changes as
µ− λ decreases, showing the transition between the subcritical and critical
regimes. When µ − λ is of constant order, the expected extinction time is
(1 + o(1)) logN/(µ − λ); as (µ − λ)N1/2 tends to infinity more and more

slowly, the expected extinction time grows almost as large as N1/2.
We next give versions of (1.4) valid when XN (0)/N lies in certain ranges,

assuming always that (µ(N)−λ(N))N1/2 → ∞ and XN (0)(µ(N)−λ(N)) →
∞. One important special case is whenXN (0)/N → α, with α ∈ (0, 1], when
Theorem 1.1 gives that, for a standard Gumbel random variable W ,

(µ−λ)TN−
(
logN+2 log(µ−λ)+logα−log(λα+µ−λ)−logµ

)
→W, (1.5)

in distribution, as N → ∞.
In general, (1.4) is the most that can be said if µ−λ is of the same order

as XN (0)/N (e.g., if both are constants). On either side of this regime, the
formula in (1.4) can be simplified.

For instance, if XN (0)/N(µ− λ) → ∞ (so XN (0)/N is asymptotically of
larger order than µ− λ), then

(µ− λ)TN −
(
logN + 2 log(µ− λ)− logµ− log λ

)
→W, (1.6)

in distribution, as N → ∞, whereW has the standard Gumbel distribution.
In (1.6), necessarily µ− λ → 0, so either of the terms log µ and log λ could
be replaced by the other.

Note that, for any X,

logN+log(µ−λ)− log
(
1+

(µ− λ)N

λX

)
− log λ = logX− log

( λX

(µ− λ)N
+1
)
,

and so an equivalent form of (1.4) is

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− log

(
1 +

λXN (0)

(µ− λ)N

)
− logµ

)
→W.

(1.7)
It follows that, if XN (0)/N(µ − λ) → 0 (so XN (0)/N is asymptotically of
smaller order than µ− λ) and XN (0)(µ− λ) → ∞, then

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− logµ

)
→W, (1.8)

in distribution, as N → ∞.
We observe that the asymptotic formula for the distribution of TN in (1.8)

is independent of N , while that in (1.6) is independent of XN (0). An expla-
nation for the first of these phenomena is that, in this regime, the quadratic
terms in the drift are smaller than the linear ones, and the logistic process
behaves essentially identically to a linear birth-and-death chain with birth
rate λ and death rate µ. In Section 2, we show that the logistic correction to
the birth rate (i.e., the term −λX(t)2/N), does not affect the asymptotics
of the remaining time to extinction.
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If µ−λ→ 0, then, for large enoughXN (0) (such thatXN (0) ≫ (µ−λ)N),
we are in the regime covered by (1.6), where the asymptotic distribution of
the time to extinction does not depend on the starting state. To explain
this, we give an informal description of the typical course of the epidemic
in the case where µ − λ → 0, and we start in some large state, say with
XN (0) = ⌈αN⌉ and 0 < α ≤ 1.

For such a regime, in the initial phase of the epidemic, the number XN (t)
of infectives very rapidly drops – in time o(1/(µ − λ)) – until it reaches
states of the same order as (µ − λ)N . The majority of the duration of
the epidemic – asymptotically log(N(µ − λ)2))/(µ − λ) – is spent getting
from there to states of the same order as (µ − λ)−1; the time taken to
cross this gap is very well concentrated around the value derived from the
approximating differential equation. Most of the variability of the time to
extinction comes from the end stages of the epidemic, when XN (t) is of
order below (µ− λ)−1; for this phase, the differential equation is no longer
an adequate guide to the behaviour of the stochastic process, and instead
XN (t) is well approximated by a linear birth-and-death chain. The expected
remaining time to extinction, from a state of order (µ−λ)−1, is on the order
of 1/(µ − λ), and the standard deviation is of the same order. (The choice
of where to draw the line between the “intermediate” and “final” phases is
somewhat arbitrary, and a substantial part of the duration of the epidemic
could be assigned to the final phase. Our results essentially show that the
approximation by a linear birth-and-death chain is good starting from any
state below the order of (µ− λ)N .)

Note that the description above relies on having (µ− λ)N ≫ (µ− λ)−1.

If µ− λ = o(N−1/2), then the situation is completely different: the time to
extinction is essentially distributed as in the case µ = λ.

The assumption in Theorem 1.1 that XN (0)(µ− λ) → ∞ is necessary for
the conclusion to hold; otherwise the variability in the extinction time is not
as large as is given by the Gumbel distribution. We give more details for
the case where this assumption is not satisfied at the end of Section 2.

Sections 2-5 are devoted to the proof of Theorem 1.1. We track the
epidemic process through three phases, roughly corresponding to the three
phases mentioned in the informal description above. For some regimes, not
all the phases are necessary, and we tackle them in reverse order, starting
with the final phase of the epidemic. Our intermediate results are stated
in terms of a function ω(N), which tends to infinity suitably slowly; for
convenience, we specify throughout that

ω(N) = (µ(N)− λ(N))1/4N1/8. (1.9)

We treat the final phase in Section 2. Here, we start from a state below
N1/2ω(N), and show that, from this point on, XN (t) is well approximated
by a linear birth-and-death chain with the same parameters. Since the dis-
tribution of the extinction time for a linear birth-and-death chain is known
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explicitly, this enables us to analyse very precisely the behaviour of the lo-
gistic chain. This phase covers the stage of the epidemic giving rise to the
randomness in the time to extinction. An alternative way to view the final
phase of the epidemic is to approximate it by a branching process, where
each initially infected individual sparks a brief small epidemic within the
population, and these various small epidemics do not interact significantly.
The time to extinction is then the maximum of the durations of these small
epidemics, and this explains the appearance in our formulae of the standard
Gumbel distribution, which typically arises as the maximum of a number of
independent samples from a given distribution. Note again that the exact
break point between the final and intermediate phases is somewhat arbi-
trary. We do need to start the final phase in a state well below N(µ − λ),
so that the logistic effects can be ignored, and it is helpful to us to start
slightly smaller yet; on the other hand we do need the initial state larger
than (µ− λ)−1 for the formula involving the Gumbel distribution to apply.

The intermediate phase is covered in Section 3. Here, effectively, we prove
Theorem 1.1 under the additional assumption that XN (0) ≤ (µ−λ)Nω(N).
We show that the scaled process (XN (t)/N) stays close to the solution of
the differential equation (1.2) for a (deterministic) period of time until there

are about N1/2ω(N) infective individuals (from which point the analysis for
the final phase can be invoked).

In Section 4, we provide a fairly crude upper bound on the duration of
the initial phase of the epidemic, starting from any state and reaching a
state of order about N(µ − λ)ω(N). The length of this phase is negligible
compared to the overall duration of the epidemic, or even the fluctuations
in the overall duration, so greater precision is not necessary.

In Section 5, we combine our results to prove Theorem 1.1.
Our results have some bearing on the critical regime, where |µ − λ| =

O(N−1/2). In particular, the methods of Section 4 can be used to show that
the expected time for the epidemic starting from an arbitrary state to reach
a state of size about N1/2 is of order at most N1/2. Dolgoarshinnykh and
Lalley (2006) show that, in this regime, the scaled logistic process starting

from a state of order N1/2 converges in law to an “attenuated” Feller dif-
fusion. One consequence is that the time to extinction from states of size
about N1/2 is of order N1/2 (and is not well-concentrated). We discuss the
critical regime briefly in the short Section 6, but make no attempt to provide
precise results.

In Section 7, we consider the total number CN of new cases (i.e., infection
events) over the duration of the epidemic. Theorem 7.1 provides a precise
estimate, valid throughout the subcritical regime, of the expectation of CN
of new cases, and states that CN is well-concentrated around its mean, via
an estimate of the variance of CN . One consequence of this result is that, if
XN (0) ≫ (µ− λ)N , then most of the new cases occur during the short first
phase of the epidemic, i.e., before XN (t) has dropped to around (µ− λ)N .
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The total number of new cases in the SIS logistic epidemic is studied in
detail by Kessler (2008), for the full range of parameter values. In the sub-
critical regime, Kessler (2008) gives an asymptotic formula agreeing with
ours for the expectation of CN when XN (0) is of order N , and discusses

other cases, including ones where µ − λ = δN−1/2 and δ is large. He also
estimates the asymptotic distribution of CN in subcritical, critical and su-
percritical regimes, but only in the case XN (0) = 1. Our results show that,
provided XN (0)(µ−λ) tends to infinity, CN is well-concentrated around its
expectation.

In Section 8, we present numerical methods to treat fixed values of N .
All our theoretical results concern limiting behaviour as the population size
N tends to infinity, and in many places it is important that terms such as
logN (or indeed functions potentially growing more slowly) are much larger
than constants. It is not apparent that our results have any bearing on
“human-size” populations: we address this issue by performing numerical
calculations for a range of values of N and appropriate values of λ and µ. As
we explain in Section 8, it is more efficient to estimate the distribution of (for
instance) the extinction time by numerical integration, as opposed to using
Monte Carlo methods. We see good agreement between asymptotic results
and simulation for temporal behaviour even for N = 10 and N = 100, when
typically one does not see this until N = 1000 for epidemic models (see, e.g.,
Demiris and O’Neill 2006).

We conclude, in Section 9, by expanding on our observations about the
behaviour of a barely subcritical epidemic. We discuss in particular those
features that we expect to carry over to more complex models, or to real-
world epidemics, especially the resemblance to a random walk for a period
before extinction, and the weakening of the cut-off phenomenon as we ap-
proach criticality. In Appendix A, we present some data from real epidemics,
and make some very tentative connections between our hypotheses and the
observations.

2. Final phase: approximation by linear birth-and-death chains

Suppose that µ = µ(N) and λ = λ(N) are bounded away from both 0
and infinity, and that XN (0) is non-random with XN (0)(µ − λ) → ∞ and

XN (0) ≤ ω(N)N1/2, where ω(N) = (µ − λ)1/4N1/8, as in (1.9). We will
show that, with such an initial state, XN (t) is well approximated until ex-
tinction by a pair of linear birth-and-death chains. The assumption that
XN (0)(µ − λ) → ∞ ensures that the randomness in the extinction time of
the approximating linear birth-and-death chains has a Gumbel distribution.

We will prove the following lemma.

Lemma 2.1. Suppose that (µ−λ)N1/2 → ∞. Set ω(N) =
(
(µ−λ)N1/2

)1/4
,

and assume that XN (0)(µ− λ) → ∞ and XN (0) ≤ 2N1/2ω(N). Then

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− logµ

)
→W,
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in distribution, as N → ∞, where W has the standard Gumbel distribution.

Note that this result is the same as the special case of Theorem 1.1 covered
by (1.8), under the more restrictive hypothesis that XN (0) ≤ 2N1/2ω(N) =

2N5/8(µ− λ)1/4 instead of XN (0) = o((µ− λ)N). Later results will supply
the conclusion of Theorem 1.1 with no upper bounds on the starting state.

For a birth-and-death chain (B(t)) on Z+ with a unique absorbing state
at 0, let TB be the extinction time, that is TB = inf{t : B(t) = 0} is the
time when (B(t)) gets absorbed at 0. Thus the extinction time of (XN (t))
is TN = TXN .

Let (Y (t))t≥0 be a linear birth-and-death chain with birth rate λ and
death rate µ, so its transition rates from state Y ∈ Z+ are given by

Y → Y + 1 at rate λY,

Y → Y − 1 at rate µY.

Assume that Y (0) is non-random. It is known – see for instance (2.4.23)
in the book of Renshaw (2011) – that, for t ≥ 0 and µ ̸= λ,

P(T Y ≤ t) = P(Y (t) = 0) =

(
µ− µe−(µ−λ)t

µ− λe−(µ−λ)t

)Y (0)

=

(
1− (µ− λ)e−(µ−λ)t

µ− λe−(µ−λ)t

)Y (0)

.

(2.1)
We will write (YN (t)) to denote a linear birth-and-death chain with birth

rate λ(N) and death rate µ(N). Suppose that YN (0) = XN (0), where
XN (0)(µ− λ) → ∞ as N → ∞. For each fixed w ∈ R, we set

tw = tw(µ, λ,XN (0)) =
logXN (0) + log(µ− λ)− logµ+ w

µ− λ
,

and note that tw > 0 for sufficiently large N . Restricting to those N for
which tw is indeed positive, we have that e−(µ−λ)tw = µe−w/(µ− λ)XN (0).
Hence, from (2.1), the extinction time T YN satisfies

P(T YN ≤ tw) =

(
1− µe−w/XN (0)

µ− λµe−w/(µ− λ)XN (0)

)XN (0)

=

(
1− e−w

XN (0)− λe−w/(µ− λ)

)XN (0)

→ e−e
−w
,

as N → ∞, since XN (0)(µ− λ) → ∞. This can be written as

(µ− λ)T YN −
(
logXN (0) + log(µ− λ)− logµ

)
→W, (2.2)

in distribution, as N → ∞, whereW has the standard Gumbel distribution.

The plan of the proof of Lemma 2.1 is to sandwich the logistic process
(XN (t)) between two linear birth-and-death chains, the upper of which is
(YN (t)). The upper bound on XN (0) ensures that XN (0)/N(µ − λ) → 0,
so “logistic effects” in the drift become negligible and so the linear birth-
and-death chains approximate (XN (t)) well. Our argument is a little crude,
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in that the birth rate of the lower of the two birth-and-death chains is
significantly below that of the logistic process for most of the phase, and
this is why we need the stronger hypothesis XN (0) ≤ 2N1/2ω(N), rather
than just XN (0)/N(µ− λ) → 0, and the precise form of ω matters here.

We will use the following result about birth-and-death chains with a
higher rate of deaths than births: we omit the routine proof.

Lemma 2.2. Let (B(t)) be a birth-and-death chain on Z+, with B(0) non-
random. Suppose that, from any state, the probability that the next transi-
tion is upwards is at most p, and the probability that the next transition is
downwards is at least q > p.

For any state B > B(0), the probability that the chain (B(t)) reaches B
before it reaches 0 is at most

(q/p)B(0) − 1

(q/p)B − 1
≤
(
p

q

)B−B(0)

≤ exp (−(1− p/q)(B −B(0))) .

Proof of Lemma 2.1. We couple three Markov chains: one is the logistic pro-
cess (XN (t)), another is the linear birth-and-death chain (YN (t)) with the
same parameters (λ(N), µ(N)) as (XN (t)), and the third is a linear birth-
and-death chain (ZN (t)) with parameters (λ′(N), µ(N)) where λ′(N) =
λ(N)(1− 2XN (0)/N). We let YN (0) = XN (0) = ZN (0). Let τN be the first
time that either XN (t) = 0 or XN (t) = 2XN (0). The birth rate of (XN (t))
when in stateX is λX(1−X/N), which for t ≤ τN is sandwiched between the
birth rates of the two linear birth-and-death chains in the same state. For
each N , we may thus construct a coupling such that ZN (t) ≤ XN (t) ≤ YN (t)
for all t ≤ τN . The rule is that, if any two chains are in the same state, then
they make jumps together as far as possible; otherwise two chains in dif-
ferent states make jumps independently according to their given transition
rates, and so they a.s. do not jump simultaneously (so they do not cross).
With this coupling, on the event that XN (τN ) = 0 (i.e., (XN (t)) reaches 0
before it reaches the upper boundary 2XN (0)), T

ZN ≤ TN ≤ T YN .
For each fixed w and N , we choose v = v(w,N) so that tw(µ, λ,XN (0)) =

tv(µ, λ
′, XN (0)), i.e.,

logXN (0) + log(µ− λ)− logµ+ w

µ− λ
=

logXN (0) + log(µ− λ′)− logµ+ v

µ− λ′
.

This translates to

v(w,N)−w =
λ− λ′

µ− λ
(logXN (0) + log(µ− λ)− logµ+ w)−log

(
1 +

λ− λ′

µ− λ

)
.

(2.3)
We observe that

λ− λ′

µ− λ
=

2XN (0)λ

N(µ− λ)
≤ 4λω(N)

N1/2(µ− λ)
=

4λ

ω(N)3
. (2.4)
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Also we have, for N sufficiently large,

log(XN (0)(µ−λ)) ≤ (XN (0)(µ−λ))1/2 ≤
(
2N1/2ω(N)N−1/2ω(N)4

)1/2
= 2ω(N)5/2.

Therefore, for each fixed w, we have both

λ− λ′

µ− λ
(logXN (0) + log(µ− λ)− logµ+ w) ≤ 2λ

ω(N)3

(
2ω(N)5/2 +O(1)

)
= o(1)

and, by (2.4),

log

(
1 +

λ− λ′

µ− λ

)
= o(1),

and so, from (2.3), |v(w,N) − w| = o(1). In other words, v(w,N) → w as
N → ∞, for each fixed w.

Thus

|P(TZN ≤ tw(µ, λ,XN (0)))− e−e
−w |

= |P(TZN ≤ tv(µ, λ
′, XN (0)))− e−e

−w |

≤ |P(TZN ≤ tv(µ, λ
′, XN (0)))− e−e

−v(w,N) |+ |e−e−v(w,N) − e−e
−w | → 0

asN → ∞. Here we used (2.2) applied to (ZN (t)) (note thatXN (0)(µ−λ′) >
XN (0)(µ− λ), which tends to infinity).

Also by (2.2), as N → ∞,

P(T YN ≤ tw(µ, λ,XN (0))) → e−e
−w
.

As (XN (t)) is sandwiched between (YN (t)) and (ZN (t)) for all times t, on
the event A := {XN (τN ) = 0}, we see that

P({T YN ≤ t} ∩A) ≤ P({TN ≤ t} ∩A) ≤ P({TZN ≤ t} ∩A),
and in particular this holds with t = tw(µ, λ,XN (0)). By Lemma 2.2 with

p = λ/(λ + µ) = 1 − q and B(0) = XN (0), P(A) ≤ e−(µ−λ)XN (0)/µ = o(1),
since (µ− λ)XN (0) → ∞. Hence, as N → ∞,

P(TN ≤ tw(µ, λ,XN (0))) → e−e
−w
.

Equivalently, as N → ∞,

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− logµ

)
→W,

in distribution, where W has the standard Gumbel distribution, as claimed.
�

In the case where (µ − λ)XN (0) does not tend to infinity, we can use
a similar argument to show that the distribution of the extinction time of
(XN (t)) is asymptotically the same as that of the linear birth-and-death
chain with the same parameters. We give a brief sketch of the argument in
the case where (µ− λ)XN (0) → 0.

For a linear birth-and-death chain (YN (t)) with parameters (λ, µ) and
YN (0) = XN (0) = o(1/(µ − λ)), Lemma 2.2 shows that the probability of

the event A that (YN (t)) never reaches N1/2 before extinction is 1 − o(1).
Accordingly, we consider also a linear birth-and-death chain (ZN (t)) with
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birth rate equal to λ′ = λ(1 − N−1/2). As in the proof of Lemma 2.1, we
may couple our three processes so that ZN (t) ≤ XN (t) ≤ YN (t) for all t, on
the event A.

It can be seen from (2.1) that, if (µ − λ)XN (0) → 0 and XN (0) → ∞,
then for any v ∈ (0,∞),

P
(
T YN ≤ vXN (0)/µ

)
→ e−1/v as N → ∞. (2.5)

Note that (2.5) does not depend on µ−λ, provided that (µ−λ)XN (0) → 0.

Note also that (λ− λ′)XN (0) = λN−1/2XN (0) = o(N−1/2/(µ− λ)) = o(1),
and so (µ−λ′)XN (0) → 0 whenever (µ−λ)XN (0) → 0. Therefore (2.5) holds

with T YN replaced by TZN , and hence also P(TN ≤ vXN (0)/µ) → e−1/v.
We can also consider the case where the epidemic starts with a single

infective: if µ− λ→ 0 and XN (0) = 1, then, for any u ∈ (0,∞),

P
(
TXN ≤ u/µ

)
→ u

1 + u
as N → ∞.

3. Intermediate phase: differential equation approximation

For any α ∈ [0, 1], the differential equation (1.2) subject to initial condi-
tion x(0) = α has an explicit solution

x(t) =
α(µ− λ)e−(µ−λ)t

µ− λ+ αλ(1− e−(µ−λ)t)
, t ≥ 0. (3.1)

For fixed 0 < α ≤ 1, the inverse of the function x(t) is given by

tα(x) =
s(x)− s(α)

µ− λ
; where s(x) = log

(
1 +

λ

µ− λ
x

)
− log x, (3.2)

for 0 < x ≤ α.
We also note for future reference that x(t) ≤ x(0)e−(µ−λ)t, and therefore,

for any t ≥ 0, ∫ t

0
x(s) dt ≤ x(0)

µ− λ
. (3.3)

As in (1.9), we set ω(N) = (µ−λ)1/4N1/8, and suppose that N1/2ω(N) ≤
XN (0) ≤ (µ − λ)Nω(N). Let X∗ = X∗(N) = N1/2ω(N). We will show
that XN (t)/N is well approximated by the solution x(t) to the differen-
tial equation (1.2) with x(0) = XN (0)/N , at least until the time t∗ =
tXN (0)/N (X

∗/N) when x(t∗) = X∗/N . It will then follow that XN (t
∗) is

close to X∗ with probability 1 − o(1) as N → ∞. The total time to ex-
tinction will then be obtained by adding t∗ to the time to extinction from a
state very near to X∗, which is covered in Lemma 2.1.

To be precise, we will prove the following result.

Lemma 3.1. Suppose (µ − λ)N1/2 → ∞ as N → ∞. Set ω(N) = (µ −
λ)1/4N1/8, and X∗ = X∗(N) = N1/2ω(N). Suppose X∗ ≤ XN (0) ≤
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ω(N)(µ− λ)N . Then

P
(
|XN (t

∗)−X∗| > ω(N)−1/3X∗
)
= o(1),

where

t∗ = tXN (0)/N (X
∗/N) =

s(X∗/N)− s(XN (0)/N)

µ− λ
.

Moreover, we have

t∗ =
1

µ− λ

(
logXN (0)− log(X∗)− log

(
1 +

λ

µ− λ

XN (0)

N

)
+ o(1)

)
.

(3.4)

The final assertion in the statement follows immediately from the expres-
sion in (3.2) for s(x), since, with the assumptions given, log

(
1+ λ

µ−λ
X∗

N

)
=

o(1).

To prove Lemma 3.1, we will use standard martingale techniques, taking
advantage of the special error-correcting nature of the drift in processXN (t),
thanks to which errors in the approximation do not accumulate much over
time. Let x(t) be as in (3.1), with α = x(0) = XN (0)/N . Now set

T = inf

{
t ≥ 0 : |N−1XN (t)− x(t)| > 2

√
XN (0)(ω(N))1/4(λ+ µ)/N2(µ− λ)

}
.

Note that it will suffice to show that P(T ≤ t∗) = o(1). This is because, if
T > t∗, then

|XN (t
∗)−X∗| ≤ N sup

t≤t∗

∣∣∣XN (t)

N
− x(t)

∣∣∣ ≤ 2

√
XN (0)ω1/4(λ+ µ)

µ− λ

≤
√
ω5/4N(µ+ λ) = (µ+ λ)1/2N1/2ω5/8

= o(X∗ω−1/3), (3.5)

since we have assumed that XN (0) ≤ ω(N)(µ − λ)N and since X∗ =

N1/2ω(N).
We write, as is standard,

x(t) = x(0) +

∫ t

0
f(x(s)) ds,

where f(x) = λx(1− x)− µx = −(µ− λ)x− λx2.
Also by standard theory,

XN (t)

N
=
XN (0)

N
−(µ−λ)

∫ t

0

XN (s)

N
ds−λ

∫ t

0

(XN (s)

N

)2
ds+MN (t), (3.6)

where (MN (t))t≥0 is a zero-mean martingale.
Setting eN (t) = XN (t)/N − x(t), it follows that

eN (t) = −
∫ t

0
eN (s)

[
(µ− λ) + λ

(XN (s)

N
+ x(s)

)]
ds+MN (t).(3.7)
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To bound eN (t), we use the following simple lemma. For future appli-
cations (e.g., in forthcoming work by Lopes and Luczak on the SIS logistic
competition model), we state it in a slightly more general form than needed
here.

Lemma 3.2. Fix a time τ0, and let m : [0, τ0] → R and r, v : [0, τ0] → R+

be càdlàg functions, where v is decreasing, and suppose that u : [0, τ0] → R
is a càdlàg function satisfying

u(t) = m(t)− v(t)

∫ t

0
r(s)u(s) ds,

for 0 ≤ t ≤ τ0. Then

sup
t≤τ0

|u(t)| ≤ 2 sup
t≤τ0

|m(t)|.

Proof. Let M = supt≤τ0 |m(t)|. Choose any τ ∈ [0, τ0], and suppose without
loss of generality that u(τ) ≥ 0. If u(t) ≥ 0 for all t ≤ τ , then we certainly
have u(τ) ≤ m(τ) ≤ M . Otherwise, let σ = sup{t ≤ τ : u(t) < 0} > 0,
and observe that lims→σ− u(s) ≤ 0 and u(s) ≥ 0 for σ < s ≤ τ , and so∫ τ
σ r(s)u(s) ds ≥ 0. We may therefore write

u(τ) = m(τ)− v(τ)

∫ σ

0
r(s)u(s) ds− v(τ)

∫ τ

σ
r(s)u(s) ds

= m(τ)− lim
t→σ−

(m(t)− u(t))
v(τ)

v(t)
− v(τ)

∫ τ

σ
r(s)u(s) ds

≤ M +M lim
t→σ−

v(τ)

v(t)
+ lim
t→σ−

u(t)
v(τ)

v(t)
− v(τ)

∫ τ

σ
r(s)u(s) ds

≤ M +M + 0 + 0 = 2M.

Hence |u(t)| ≤ 2M for all t ≤ τ0, as required. �

We apply Lemma 3.2 with τ0 = t∗, u(t) = eN (t), m(t) =MN (t), v(t) = 1,
and r(s) = (µ− λ) + λ(XN (s)/N + x(s)). The hypotheses of the lemma are
satisfied since µ > λ, and so we have

sup
t≤t∗

|eN (t)| ≤ 2 sup
t≤t∗

|MN (t)|. (3.8)

Therefore,

P(T ≤ t∗) ≤ P
(
sup
t≤t∗

|MN (t)| >
√
XN (0)(ω(N))1/4(λ+ µ)/N2(µ− λ)

)
.

(3.9)
To bound |MN (t)|, we use a standard exponential martingale argument.

Let q1N (x) = λNx(1 − x) and q−1
N (x) = µNx denote the rates of transition

of N−1XN (s), by 1/N and −1/N , respectively. For θ ∈ R, we define V θ
N (t)
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by

V θ
N (t) = exp

(
θN−1(XN (t)−XN (0))−

∫ t

0

∑
j

qjN (N
−1XN (s))(e

θN−1j − 1) ds
)

= exp
(
θMN (t)−

∫ t

0

∑
j

qjN (N
−1XN (s))(e

θN−1j − 1− θN−1j) ds
)
.(3.10)

The process (V θ
N (t)) is a mean 1 martingale. Using that ez − 1 − z =

z2
∫ 1
0 e

rz(1− r) dr ≤ 1
2z

2e|z|, we see that

V θ
N (t) ≥ exp

(
θMN (t)−

θ2

2N2
e|θ|/N

∫ t

0

∑
j

qjN (N
−1XN (s)) ds

)
.

Assume that |θ| ≤ N log 2. Let T1 = inf{t ≥ 0 : XN (t) > 2Nx(t)}; then for
t ≤ T1,

V θ
N (t) ≥ exp

(
θMN (t)−

2θ2

N
(λ+ µ)

∫ t

0
x(s) ds

)
≥ exp

(
θMN (t)−

2θ2(λ+ µ)XN (0)

N2(µ− λ)

)
, (3.11)

by (3.3).
For δ ∈ R, let T+(δ) = inf{t ≥ 0 : MN (t) > δ}, and let T−(δ) = inf{t ≥

0 :MN (t) < −δ}. On the event {T+(δ) ≤ T1},

V θ
N (T

+(δ)) ≥ exp
(
θδ − 2θ2(λ+ µ)XN (0)

N2(µ− λ)

)
.

By optional stopping and the Markov inequality,

P(T+(δ) ≤ T1) ≤ exp
(
− θδ +

2θ2XN (0)(λ+ µ)

N2(µ− λ)

)
.

Choosing θ = 1
4δN

2(µ − λ)/XN (0)(λ + µ), we have |θ| ≤ N log 2 for
sufficiently large N , provided δ = o(XN (0)/N(µ− λ)). We then obtain

P(T+(δ) ≤ T1) ≤ e−δ
2N2(µ−λ)/8XN (0)(λ+µ),

and, similarly,

P(T−(δ) ≤ T1) ≤ e−δ
2N2(µ−λ)/8XN (0)(λ+µ).

It follows that

P( sup
t≤t∗∧T1

|MN (t)| > δ) ≤ 2e−δ
2N2(µ−λ)/8XN (0)(λ+µ).

Take δ =
√
XN (0)ψ(λ+ µ)/N2(µ− λ), for some ψ ≤

√
N ; this choice

guarantees that δ = o(XN (0)/N(µ − λ)), since it is equivalent to ψ =
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o(XN (0)/(µ − λ)), and we have assumed that XN (0)/N
1/2 → ∞. We thus

obtain

P
(

sup
t≤t∗∧T1

|MN (t)| >

√
XN (0)ψ(λ+ µ)

N2(µ− λ)

)
≤ 2e−ψ/8.

If we choose ψ = (ω(n))1/4, then ψ ≤ N1/2 for N large enough, since,

by (1.9), ω(N) = (µ(N)−λ(N))1/4N1/8 = O(N1/8). Let δ0 =
√

XN (0)ω1/4(λ+µ)
N2(µ−λ) ,

and let T0 = T+(δ0) ∧ T−(δ0). Then, using (3.9),

P(T ≤ t∗) ≤ P(T0 ≤ t∗) ≤ P(T0 ≤ t∗ ∧ T1) + P(T1 ≤ t∗ ∧ T0) ≤ 2e−ω(N)1/4/8,

since we showed in (3.5) that δ0 = o(X∗/N) = o(x(t)) for all t ≤ t∗, and so
P(T1 ≤ t∗ ∧ T0) = 0, provided N is sufficiently large.

This completes the proof of Lemma 3.1.

4. Initial phase: upper bounds

In this section, we show that, if XN (0) > (µ − λ)Nω(N), then by the
time t0 = 1/(ω(N)λ(µ−λ)), XN (t) with high probability will have dropped
down below (µ− λ)Nω(N).

To this end, we give a lemma showing that E(XN (t)/N) is always bounded
above by the solution x(t) of the differential equation (1.2). This result has
earlier been proved by Allen (2008, p94), and in a more general setting by
Simon and Kiss (2013).

Lemma 4.1. Suppose that XN (0) ∈ {0, 1, . . . , N} is non-random, and let
x(t) be the solution to (1.2) with initial condition x(0) = XN (0)/N . Then,
for all t ≥ 0,

EXN (t) ≤ Nx(t).

Proof. (Sketch) It is easy to calculate that, for all t ≥ 0,

d

dt

(
EXN (t)−Nx(t)

)
=

(
EXN (t)−Nx(t)

){
−(µ− λ)− λ

(EXN (t)

N
+ x(t)

)}
− λ

N
E
(
XN (t)− EXN (t)

)2
.

Using the integrating factor exp
(
t(µ− λ) + λ

∫ t
0 (N

−1 EXN (s) + x(s)) ds
)
,

and the fact that EXN (0)−Nx(0) = 0, it follows that YN (t) = EXN (t)−
Nx(t) satisfies

YN (t) = − λ

N

∫ t

s=0
E(XN (s)−EXN (s))

2e−(t−s)(µ−λ)−λ
∫ t
s (N

−1 EXN (u)+x(u)) du ds,

and so is non-positive for all t ≥ 0. �

The previous result implies the following lemma.
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Lemma 4.2. Let ω(N) be any function tending to infinity, and set t0 =
t0(N) = 1

ω(N)1/2λ(µ−λ) . Then, for any initial state XN (0),

P
(
XN (t0) ≥ N(µ− λ)ω(N)

)
= o(1).

Proof. We note that, for any value of x(0), and any t ≥ 0,

x(t) =
x(0)(µ− λ)e−(µ−λ)t

(µ− λ) + x(0)λ(1− e−(µ−λ)t)
≤ (µ− λ)e−(µ−λ)t

λ(1− e−(µ−λ)t)
≤ 1

λt
.

Here we used the inequality e−u ≤ (1− e−u)/u, valid for all u > 0.

Therefore we have x(t0) ≤ (µ− λ)ω(N)1/2, for any value of x(0). Hence,

by Lemma 4.1, we have EXN (t0) ≤ (µ − λ)Nω(N)1/2, for any initial state
XN (0), and it follows that

P
(
XN (t0) ≥ (µ− λ)Nω(N)

)
≤ 1

ω(N)1/2
= o(1).

�

5. Proof of Theorem 1.1

In this section, we assemble the lemmas from the preceding three sections
into a proof of Theorem 1.1.

Given two copies (B(t)) and (B̃(t)) of a continuous-time birth-and-death

chain, with B(0) ≤ B̃(0), we can couple them in a monotone way. If B(t) =

B̃(t), then they make the next jump (and all subsequent jumps) together.

For as long as B(t) ̸= B̃(t), (B(t)) and (B̃(t)) evolve independently, so that
a.s. they do not jump simultaneously. This ensures that a.s. the two copies
of the chain never cross, so that B(t) ≤ B̃(t) a.s. for all t.

Proof. Recall from (1.9) that ω(N) =
(
N1/2(µ−λ)

)1/4
. We distinguish three

ranges for the starting state XN (0), assuming always that (µ− λ)XN (0) →
∞:

(a) XN (0) ≤ 2N1/2ω(N),

(b) 2N1/2ω(N) < XN (0) ≤ (µ− λ)Nω(N),
(c) XN (0) > (µ− λ)Nω(N).

It could be that XN (0) falls into different ranges for different values of N :
we partition the set of natural numbers into three sets depending on which
of (a), (b), (c) holds. It suffices to prove the result separately for whichever
subsequence(s) are infinite, and so we may treat each of the three ranges in
turn, working (tacitly) with an infinite sequence of values of N for which
the inequalities defining the range hold.

(a) Suppose (µ− λ)XN (0) → ∞ and XN (0) ≤ 2N1/2ω(N). By Lemma 2.1,

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− logµ

)
→W,

in distribution, as N → ∞, whereW has the standard Gumbel distribution.
This is (1.8), which is equivalent to (1.4) in this range.
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(b) Let X∗ = X∗(N) = N1/2ω(N). Suppose that 2N1/2ω(N) < XN (0) ≤
(µ − λ)Nω(N). We run (XN (t)) for a time t∗ = tXN (0)/N (X

∗/N), as in

the statement of Lemma 3.1. Let E be the event that X∗(1− ω(N)−1/3) ≤
XN (t

∗) ≤ X∗(1 + ω(N)−1/3); by Lemma 3.1, P(E) = o(1).
Let (YN (t)) be a copy of the logistic process with YN (0) = X∗(1 −

ω(N)−1/3), and (ZN (t)) be a copy with ZN (0) = X∗(1+ω(N)−1/3). On the
event E, we couple these with (XN (t)) from time t∗ onwards in a monotone
way, so that YN (t) ≤ XN (t

∗+t) ≤ ZN (t) for all t ≥ 0. Then, on the event E,
T YN + t∗ ≤ TN ≤ TZN + t∗. By Lemma 2.1, as N → ∞, in distribution,

(µ− λ)T YN −
(
logXN (0) + log(1− ω(N)−1/3) + log(µ− λ)− logµ

)
→W,

whereW is a standard Gumbel random variable. Since log(1−ω(N)−1/3) =
o(1), we then have from the asymptotic formula (3.4) for t∗, as N → ∞,

(µ−λ)(T YN+t∗)−
(
logXN (0)+log(µ−λ)−log

(
1+

λXN (0)

(µ− λ)N

)
−logµ

)
→W,

in distribution, and the same holds when T YN is replaced by TZN . Hence,
as N → ∞,

(µ− λ)TN −
(
logXN (0) + log(µ− λ)− log

(
1 +

λXN (0)

(µ− λ)N

)
− logµ

)
→W,

in distribution. This is (1.7), which we have seen is equivalent to (1.4).

(c) Suppose XN (0) > (µ − λ)Nω(N). Let κN be the hitting time of ⌊(µ −
λ)Nω(N)⌋. Let t0 = 1/ω(N)1/2λ(µ− λ), as in Lemma 4.2; by Lemma 4.2,
κN ≤ t0 with probability 1− o(1). Then TN is the sum of κN and the time
to extinction from state ⌊(µ− λ)Nω(N)⌋. So TN is bounded below by

1

µ− λ

(
log
(
(µ− λ)Nω(N)

)
+ log(µ− λ)− log

(
1 + λω(N)

)
− logµ+WN

)
,

and, with probability 1− o(1), bounded above by

1

µ− λ

(
t0(µ−λ)+log

(
(µ−λ)Nω(N)

)
+log(µ−λ)−log

(
1+λω(N)

)
−logµ+WN

)
,

where WN converges in distribution to a standard Gumbel random variable
W . Since (µ− λ)t0 = o(1) and ω(N) → ∞, it follows that, as N → ∞,

(µ− λ)TN −
(
logN + 2 log(µ− λ)− log λ− logµ

)
→W,

in distribution. This is (1.6), which is equivalent to (1.4) in this range.

This completes the proof. �

6. The critical regime

Our methods can also be applied in the critical regime, where |µ −
λ| = O(N−1/2). In this case, there exist constants δ, c > 0 (depending

on lim supN→∞(λ − µ)N1/2)), such that, regardless of the value taken by
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XN (0), P(TN ≤ cN1/2) > δ. One way to prove this is as follows: (a) ap-

ply Lemma 4.1 for t = N1/2, and so x(t) ≤ 1/(λt) = O(N−1/2), to show

that, for some constant c1, with positive probability, XN (t) ≤ c1N
1/2, uni-

formly in XN (0); (b) compare (XN (t)) with a linear birth-and-death chain

with the same parameters, with initial state c1N
1/2, and show that, for

some constant c2, with positive probability, (XN (t)) reaches 0 in a fur-

ther time c2N
1/2. Thus there is a positive probability of extinction by

time (c1 + c2)N
1/2, whatever the initial state. It now follows, by repeated

trials, that P(TN > ω(N)N1/2) → 0 whenever ω(N) → ∞. Through-
out the critical regime, a lower bound on the extinction time of the form
P(TN ≤ ε(N)N1/2) → 0 whenever ε(N) → 0 can again be obtained by
comparing with a suitable linear birth-and-death chain. Much more precise
results concerning the process in the critical regime with initial state of order
N1/2 are given by Dolgoarshinnykh and Lalley (2006). In this regime, both

the expected extinction time and the fluctuations are of order N1/2, so that
we do not have cut-off. This is in line with our results for the barely subcrit-
ical regime showing that cut-off becomes less pronounced as we approach
the critical regime from below.

7. Total number of cases

We now turn our attention to the total number CN of new cases (infection
events) from the start of the epidemic until its extinction.

We will prove that, provided XN (0)(µ − λ) → ∞, the total number CN
of cases is concentrated around its expectation, which is close to

N
µ

λ
log

(
1 +

λXN (0)

N(µ− λ)

)
−XN (0).

In the case where XN (0)/N(µ − λ) → 0, our results imply that the expec-

tation of CN is close to λXN (0)
µ−λ and the variance is of the order at most

XN (0)(µ − λ)−3. (This can be interpreted as saying that the epidemic
behaves as XN (0) independent outbreaks from a single initial infective.)
If XN (0)/N(µ − λ) → ∞, then our results show that CN has expecta-

tion approximately N log
(
XN (0)/N(µ−λ)

)
, and variance of order at most

N(µ− λ)−2.

Theorem 7.1. Suppose that µ = µ(N) and λ = λ(N) are bounded away

from both 0 and infinity. Suppose also that (µ − λ)N1/2 → ∞ as N → ∞,

and that XN (0) is non-random. Let vN (x) = min
(

x1/2

(µ−λ)3/2 ,
N1/2

µ−λ

)
. Then,

for any ε > 0, there exists K(ε) such that, for N sufficiently large,

P
(∣∣∣CN − µ

λ
N log

(
1 +

λXN (0)

N(µ− λ)

)
+XN (0)

∣∣∣ ≥ K(ε)vN (XN (0))
)
≤ ε.

Proof. For X = 0, . . . , N , let ℓX = λ(1 − X/N), so that the birth rate
when XN (t) = X is equal to XℓX . Then CN has the same distribution
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as the number of births before extinction in a corresponding discrete-time
birth-and-death chain (X̂N (t)), where the probability of a birth in state X
is ℓX/(µ+ ℓX), and the probability of a death is µ/(µ+ ℓX), so we can work

with (X̂N (t)) instead.

Given X̂N (0) = X , the number of births before extinction can be repre-
sented as the sum of independent random variables CN,Y , for Y = X,X −
1, . . . , 1, where CN,Y is the number of new cases starting in state Y until
hitting state Y − 1. We will show that, for all Y = 1, . . . , N ,(

1 +
µλ

N(µ− ℓY )2

)−1 ℓY
µ− ℓY

≤ ECN,Y ≤ ℓY
µ− ℓY

.

Conditioning on the first step in a standard way, we see that µECN,Y =
ℓY (ECN,Y+1 + 1), for 1 ≤ Y ≤ N − 1. We now proceed by downward
induction. Since ℓN = 0, both our upper and lower bounds on ECN,N are
equal to zero, which is the true value. Suppose that we have the stated upper
bound on ECN,Y+1, so that, using the fact that µ ≥ λ implies µ − ℓZ ≥ 0

for all Z, ECN,Y+1 ≤ ℓY +1

µ−ℓY +1
≤ ℓY

µ−ℓY . Then

ECN,Y =
ℓY
µ
(ECN,Y+1 + 1) ≤ ℓY

µ

(
ℓY

µ− ℓY
+ 1

)
=

ℓY
µ− ℓY

,

which is the required upper bound on ECN,Y .
Suppose now that we have the stated lower bound on ECN,Y+1, so that

ECN,Y+1 ≥
(
1 +

µλ

N(µ− ℓY+1)2

)−1 ℓY+1

µ− ℓY+1
.

Then, since ℓY ≥ ℓY+1,

ECN,Y+1 + 1 ≥ µ

µ− ℓY+1
− ℓY+1

µ− ℓY+1

1− 1

1 + µλ
N(µ−ℓY +1)2


≥ µ

µ− ℓY+1
− ℓY
µ− ℓY+1

(
1− 1

1 + µλ
N(µ−ℓY )2

)

=
µ

µ− ℓY+1
− ℓY
µ− ℓY+1

µλ
N(µ−ℓY )2(

1 + µλ
N(µ−ℓY )2

)
=

µ

µ− ℓY+1

(
1 + µλ

N(µ−ℓY )2
− λℓY

N(µ−ℓY )2

1 + µλ
N(µ−ℓY )2

)

=
µ

µ− ℓY+1

(
1 + λ

N(µ−ℓY )

1 + µλ
N(µ−ℓY )2

)
=

µ

µ− ℓY

1(
1 + µλ

N(µ−ℓY )2

) .
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In the last step, we also used that µ − ℓY+1 = µ − ℓY + λ/N , and so

1 + λ
N(µ−ℓY ) =

µ−ℓY +1

µ−ℓY . It follows, as required for the induction step, that

ECN,Y =
ℓY
µ
(ECN,Y+1 + 1) ≥ ℓY

µ− ℓY

(
1 +

µλ

N(µ− ℓY )2

)−1

.

It follows from the above bounds that

ECN ≤
XN (0)∑
Y=1

ℓY
µ− ℓY

≤
∫ XN (0)

x=0

(
µ

µ− λ(1− x/N)
− 1

)
dx

=
µN

λ
log

(
1 +

λXN (0)

N(µ− λ)

)
−XN (0),

and, since N(µ− λ)2 → ∞, also that, for N sufficiently large,

ECN ≥
XN (0)∑
Y=1

ℓY
µ− ℓY

− 2µλ2

N

XN (0)∑
Y=1

1

(µ− ℓY )3
.

Noting that∫ XN (0)

x=0

(
µ

µ− λ(1− x/N)
− 1

)
dx

≤
XN (0)−1∑
Y=0

ℓY
µ− ℓY

=

XN (0)∑
Y=1

ℓY
µ− ℓY

+
λ

µ− λ
−

ℓXN (0)

µ− ℓXN (0)

≤
XN (0)∑
Y=1

ℓY
µ− ℓY

+
µ(λ− ℓXN (0))

(µ− λ)(µ− ℓXN (0))

≤
XN (0)∑
Y=1

ℓY
µ− ℓY

+
µλXN (0)

N(µ− λ)2
,

that
X∑
k=1

1

(µ− ℓk)3
≤ min

{
X

(µ− λ)3
,

∫ ∞

x=0

1

(µ− λ+ λx/N)3
dx

}
= min

{
X

(µ− λ)3
,

N

2λ(µ− λ)2

}
,

and that XN (0) ≤ N , we see that, for N large enough,∣∣∣∣ECN −
(
µN

λ
log

(
1 +

λXN (0)

N(µ− λ)

)
−XN (0)

)∣∣∣∣
≤ µλXN (0)

N(µ− λ)2
+min

(
2µλ2XN (0)

(µ− λ)3N
,

µλ

(µ− λ)2

)
≤ 3min

(
µ2λXN (0)

(µ− λ)3N
,

µλ

(µ− λ)2

)
. (7.1)
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We now estimate the variance of CN , noting that VarCN =
∑XN (0)

Y=1 VarCN,Y .

Starting from Y and until the hitting time τN,Y of Y − 1 by (X̂N (t)),

we can couple (X̂N (t)) with a discrete chain (X̂N,Y (t)) where, in any state,
the probability of a birth is ℓY /(µ + ℓY ) and the probability of a death is

µ/(µ+ ℓY ), in such a way that X̂N (t) ≤ X̂N,Y (t) for 0 ≤ t ≤ τN,Y . Letting

DN,Y be the number of births in (X̂N,Y (t)) starting from Y until hitting
Y − 1, we thus see that, under the coupling, CN,Y ≤ DN,Y . It follows that

VarCN,Y = EC2
N,Y − (ECN,Y )2 ≤ ED2

N,Y = VarDN,Y + (EDN,Y )
2.

For a given value of Y , consider a discrete random walk, starting at 1, with
probability p = µ/(ℓY + µ) of a down-step and probability q = ℓY /(ℓY + µ)
of an up-step. Then DN,Y has the same distribution as (TN,Y − 1)/2, where
TN,Y is the hitting time of the origin for this walk. Standard arguments
imply that the generating function GN,Y of TN,Y satisfies the recurrence

GN,Y (z) = pz + qz(GN,Y (z))
2, and so GN,Y (z) = (1 −

√
1− 4pqz2)/2qz.

Differentiating, we obtain EDN,Y = ℓY /(µ− ℓY ) and VarDN,Y = ℓY µ(ℓY +

µ)/(µ− ℓY )
3, and hence VarCN,Y ≤ 2λµ2

(µ− ℓY )3
. Summing over Y ,

VarCN ≤ 2µ2min

(
λXN (0)

(µ− λ)3
,

N

(µ− λ)2

)
. (7.2)

Suppose that XN (0)/N(µ − λ) → ∞. Then for N large enough, the

upper bound in (7.1) is equal to 3µλ
(µ−λ)2 ≤ N1/2/(µ − λ), and VarCN ≤

2µ2N/(µ− λ)2 in this case. If XN (0)/N(µ− λ) is bounded, then the upper

bound in (7.1) is at most of the order
XN (0)

(µ− λ)3N
, and, for N large enough,

XN (0)
1/2

(µ− λ)1/2N1/2
· 1

(µ− λ)N1/2
· XN (0)

1/2

(µ− λ)3/2
≤ XN (0)

1/2

(µ− λ)3/2
,

while VarCN is of the order at most
λXN (0)

(µ− λ)3
. In both cases, the theorem

follows by Chebyshev’s inequality. �

8. Numerical methods

The stochastic SIS logistic process (XN (t)), as defined by events and
rates (1.1), can be analysed through use of its corresponding Kolmogorov
forward equations, as we now explain. We will not index all terms by N
explicitly here for notational simplicity, but the method of analysis is for
a population of size N . We start by writing pX(t) = P(XN (t) = X), and
let p(t) be a column vector whose X-th entry is pX(t) – our convention is
that such a vector starts at its 0-th element and has length N + 1. (We
follow the more applied literature in treating p(t) as a column vector.) The
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Kolmogorov forward equations then take the form of a linear system of
differential equations

dpX
dt

= −
(
µX + λX

(
1− X

N

))
pX + λ(X − 1)

(
1− X − 1

N

)
pX−1

+ µ(X + 1)pX+1 , 0 < X < N ,

dp0
dt

= µp1 ,

dpN
dt

= −µNpN + λ
N − 1

N
pN−1 .

(8.1)
These can be expressed in the form

dp

dt
= Mp , (8.2)

where M is an (N + 1)× (N + 1) matrix. Quantities of interest include:

EXN (t) = X · p(t) , FTN (t) = P(TN ≤ t) = p0(t) , fTN (t) = µp1(t) ,
(8.3)

where X is a vector whose X-th element is X, FTN is the distribution func-
tion of the extinction time and fTN is the probability density function of
the extinction time, which has the form above due to the second equation
in (8.1). To integrate (8.2) numerically, we make use of the implicit Euler
scheme, as has been advocated for stochastic epidemic models by Jenkinson
and Goutsias (2012). We now sketch the arguments and approach presented
in that paper. First, note that the solution of (8.2) is given by a matrix ex-
ponential,

p(t) = Exp(M t)p(0) ,

and therefore over a time interval [t, t+ h] we can write

p(t+ h) = Exp(Mh)p(t) = (I +Mh+O(h2))p(t) ,

p(t) = Exp(−Mh)p(t+ h) = (I −Mh+O(h2))p(t+ h) ,
(8.4)

where I is the (N+1)×(N+1) identity matrix. The implicit Euler numerical
scheme is based on the second equation in (8.4) and involves solving the
matrix equation

(I −Mh)p+ = p (8.5)

to obtain an approximation p+ to p(t+ h), in terms of an approximation p
to p(t), at each timestep, for example by using Matlab’s \ operator. We
see from the first equation of (8.4) that the error introduced at each timestep
is O(h2), and so the global error over the interval [0, t] is O(th) as h → 0.
This means that, in practice, for given choices of N , XN (0), λ and µ, we
can tune h to achieve any desired accuracy. Suppose that p is a probability
vector; we now show that p+ generated by (8.5) is also a probability vector.
First, premultiplying (8.5) by a row vector of ones, 1⊤, we obtain

1 = 1⊤p = 1⊤Ip+ + h1⊤Mp+ = 1⊤p+ , (8.6)
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which holds because M generates a Markov chain and so its columns must
sum to zero: 1⊤M = 0. Secondly, from its definition, the off-diagonal
elements of M are non-negative, meaning that the off-diagonal elements
of I − Mh are non-positive and so, after checking for non-singularity, all
elements of (I −Mh)−1 are non-negative.

Often, solution of equations such as (8.2) for p(t) is more numerically ef-
ficient (particularly for calculating distributions of quantities like extinction
times) than Monte Carlo methods that use (pseudo-)random number gener-
ation; see Keeling and Ross (2008). To see why this should be so for our case,
note that one of the quantities we wish to calculate is the probability distri-
bution function for the extinction time of an epidemic with rates λ and µ of
order 1 with µ− λ ≈ 10−3, population size N = 107, and XN (0) = N . For
these parameter values, our asymptotic results from Theorem 7.1 give that
we expect to see over 108 events. Using Monte Carlo methods, we would
need to simulate each of these to achieve one extinction, and would need
to simulate many realisations of the entire epidemic to control the Monte
Carlo error. In contrast, use of the forward Euler method as above requires
just one realisation with the step-size h at an appropriate value relative to
required numerical error, and solution of an N -dimensional sparse linear
system at each step.

We performed a comparison of the simulation results based on implicit
Euler solution of the Kolmogorov forward equations with our asymptotic
results for a range of values of N from 101 to 107, keeping µ = 1 throughout,
for two different scenarios. In the first scenario, we do not scale R0 = λ with
N , but instead leave it constant at 0.9. In the second scenario, we scale
1−R0 approximately like N−1/3, starting with 0.9 for N = 10. The results
for these two scenarios are pictured in Figures 3 and 4 respectively. These
demonstrate that the asymptotic results can be a good approximation to the
system behaviour for large population sizes (e.g., on the scale of a town, city
or country) with regard to the extinction times, and, for any population of
more than a hundred, also for the mean number of infectives. Furthermore,
they show that for the unscaled case, extinctions happen relatively quickly
for all values of N , but that, as R0 tends to 1 with N , extinctions can take
an extremely long time to occur despite an initial fast decline in EXN (t).

We also give numerical results for the total number of cases CN . For this,
we adapt the path sum numerical method introduced by Ross (2011); we
shall show that this is suited to rapid calculation not only of the probability
mass function (as in Ross (2011)) but also of the mean variance of CN (see
(8.9) and (8.11) below). To implement this method, we track the current
state as XN ×B ∈ {0, . . . , N}×{0, 1}, where the Bernoulli random variable
B is defined to be 1 if the last event was an infection, and 0 if the last event
was a recovery. Since we are interested in the final number of cases, we only
need to consider the jump chain for this process. We will start the system
in state (XN,0, B0). Writing the state after u events as (XN,u, Bu), we see
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that

CN =
∞∑
u=0

Bu . (8.7)

(For our model, it is possible to recover CN from the total number of events
without the need for the auxiliary variable B; in more complex epidemic
models, the auxiliary variable aids easy calculation of the quantities of in-
terest.)

The transition probabilities for the jump chain are:

P(XN,u+1 = X + 1, Bu+1 = 1|XN,u = X,Bu) =

{
λ(1−X/N)

λ(1−X/N)+µ if X > 0,

0 otherwise.

P(XN,u+1 = X − 1, Bu+1 = 0|XN,u = X,Bu) =

{
µ

λ(1−X/N)+µ if X > 0,

0 otherwise.

(8.8)
Clearly, the state space decomposes into an absorbing class {(0, 0), (0, 1)}
and a transient class T of states with a positive number of infectives. For a
state i = (X,B), we set bi equal to B. We write Pi,j for the probability of
moving from state i to state j as defined in (8.8). We write ci for the expected
value of the random variable CN given that the initial state is i. A standard
calculation conditioning on the first step then shows that, for each i ∈ T ,
ci =

∑
j Pij(cj + bj). Let gi = ci+ bi; then, for each i, gi = bi+

∑
j Pijgj . It

follows that
g = (I − P )−1b . (8.9)

We note that gi differs from ci by at most 1, and only in the case where
bi = 1. Note further that: (i) the inverse in this equation does not need
to be calculated explicitly, and instead a system of linear equations can be
solved, for example using the backslash operator \ in Matlab, and (ii) we
have restricted attention to the transient states so that the inverse in (8.9)
is well-defined.

To study the variability of the distribution of CN about its mean, we
let hi = E[CN (CN − 1) | XN (0) = i]. From Ross (2011), if φi(z) :=
E[zCN |XN (0) = i], then

φi(z) = zbi
∑
j

Pi,jφj(z) (i ∈ T ) . (8.10)

We note that hi = φ′′
i (1) and hence∑

j∈T
(δi,j − Pi,j)hj = 2bi

∑
j∈T

Pi,jcj (i ∈ T ) . (8.11)

This equation for hi can also be evaluated by solving a system of linear
equations and used to calculate the standard deviation of CN .

The results of comparing the path sum to the asymptotic formula for the
mean, as well as the asymptotic variance bound (7.2), using the same pa-
rameter choices as previously, are shown in Figure 5. These results exhibit
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rapid convergence of the (scaled) mean to its asymptotic value as the pop-
ulation size N gets large, and also rapid reduction in the variability of the
distribution.

9. The relationship between the deterministic process and time
of extinction

One feature that becomes apparent by studying the numerical results is
that, especially in the barely subcritical regime, there is a clear distinction
between the time that the size of the epidemic first becomes “small” (which
is in practice often taken as a proxy for the end of the epidemic) and the
time that extinction occurs with high probability.

In a situation where control measures have brought an epidemic into a
subcritical regime, but observations of the prevalence of the epidemic are
only partial, it is potentially important to infer the likely time of extinction
from the existing observations and/or fits to models governed by differential
equations, so that control measures can be maintained for long enough that
the epidemic has died out with high probability.

For the SIS logistic process, our results indicate that an appropriate
“guide time” to the extinction time is the time t̂ at which the deterministic
process, given by (3.1) and starting from XN (0)/N , reaches x̂ = µ

(µ−λ)N
(i.e., when the number of infectives is projected to be µ/(µ − λ)). Note
that t̂ occurs significantly later than the time when the deterministic pro-
cess reaches εN , for ε a small constant, but (in the near-critical regime)
considerably earlier than the time when the deterministic process reaches
1/N , corresponding to a single remaining infective.

To see that the time t̂ has the desired property, we re-write our result
(1.4) in terms of the function s(x) introduced in (3.2). We note that

s(XN (0)/N) = log
(
1 +

λ

µ− λ

XN (0)

N

)
− log(XN (0)/N)

= log
(
1 + (µ− λ)N/λXN (0)

)
− log(µ− λ) + log λ,

and deduce that

(µ− λ)TN −
(
s(x̂)− s(XN (0)/N)− log

(
1 +

µλ

(µ− λ)2N

))
→W,

in distribution, as N → ∞. As (µ − λ)2N → ∞, and (from (3.2)) t̂ =(
s(x̂)− s(XN (0)/N)

)
/(µ− λ), this implies that

(µ− λ)(TN − t̂) →W. (9.1)

Thus the distribution of TN is concentrated in a window of width of order
1/(µ− λ) around the guide time t̂.

We now explain briefly how to express the probability of extinction by
time t, asymptotically, in terms of the deterministic process x(t). For w a
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fixed constant, set tw = t̂ + w/(µ − λ). From (9.1), we have that P(TN ≤
tw) = e−e

−w
+ o(1). From (3.2), we see that, for any α, and any constant w,

tα(x̂e
−w)− tα(x̂) =

s(x̂e−w)− s(x̂)

µ− λ
=
w + o(1)

µ− λ
,

noting that x̂/(µ−λ) = o(1). It follows that, for any value of α = x(0), and
any fixed w,

x(tw) = x̂e−w(1 + o(1)),

and therefore

exp
(
−Nx(tw)(µ− λ)/µ

)
= e−e

−w
+ o(1) = P(TN ≤ tw) + o(1).

One can now see that

sup
t

∣∣∣P(TN ≤ t)− exp
(
−Nx(t)(µ− λ)/µ

)∣∣∣→ 0 as N → ∞. (9.2)

By the time t̃ ≃ t̂ when the number XN (t̃) of infectives has dropped to
µ/(µ−λ), the epidemic is well within its final phase, and, as we have shown,
after time t̃ it is well-approximated by a linear birth-and-death chain, or by
a subcritical branching process. The behaviour of such a process is well-
understood: once it reaches a level of order 1/(µ− λ), it fluctuates through
states of that order until it goes extinct.

This is also an illustration of the effect of parameter choice on cut-off.
Away from criticality, we have a strong cut-off phenomenon: the extinction
time is concentrated within a window of time much shorter than the overall
extinction time, reflecting the idea that, before the window, the process is
“large” with high probability, and it is unlikely to drop to 0 very quickly.
As we approach criticality, once the process drops to order µ/(µ − λ), it
can (but does not always) stay around that level for a relatively long time,
giving a weaker cut-off.

As set out in the Introduction, we expect these findings to extend to a
wide class of epidemic models (not only SIS models). In their final stages,
many models will be well-approximated by a barely subcritical branching
process independent of population size, and the nature of this approximating
branching process will govern the final stages of the epidemic, for suitable
parameter values. So we expect the prevalence curve of an epidemic to follow
the solution of a differential equation closely until the number of infectives
becomes small, and the actual time of extinction to fall in a window of time
of width of order 1/µ(1 − R0), containing within it the point where the
differential equation predicts the number of infectives to be 1/(1−R0). We
expect a strong cut-off for epidemics away from criticality – once the process
approaches extinction, it goes extinct very quickly – and a weaker cut-off as
we approach criticality.

A typical sample path for a barely subcritical epidemic will resemble the
sample paths of the SIS logistic process in Figure 2: they reach states of
order 1/(1 − R0) = µ/(µ − λ) following a fairly smooth trajectory, but
then fluctuate around that level for a period of time of order 1/µ(1−R0) =
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1/(µ−λ), possibly nearing extinction several times, until finally the epidemic
does die out.

To illustrate (9.2), we simulated the relationship between the mean preva-
lence of infection EXN (t)/N (as computed from the Kolmogorov forward
equations), which is very close to the deterministic process x(t)), and the
probability of extinction P(XN (t) = 0) (as computed from Theorem 1.1).
We used the parameter values N = X0 = 107, µ = 1 and a variety of
different values of R0 = λ: the results are shown in Figure 6.

As a first step towards more realistic models, there has been recent in-
terest in a variant of an SIS epidemic where the durations of each case of
infection are iid random variables Qi with mean 1, not necessarily having an
exponential distribution. Ball, Britton and Neal (2016) show that, if the epi-
demic starts with a single individual, the expected duration of the epidemic
does not depend on the distribution of the Qi. It would be interesting to
investigate whether our results can be extended to this more general setting.
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Figure 1. Data relating to diseases placed under control.
For smallpox and polio the years when official eradication
efforts started are indicated with dashed vertical lines. For
Ebola, the effective start of control is estimated by eye and
indicated by a dashed vertical line. Exponential decay curves
with different rates are superimposed on the later part of the
data. See Appendix for more details.
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Figure 2. The SIS logistic model at different values of
R0. Other parameter choices are µ = 1, N = 106 and
XN (0) = 103. Exponential decay curves with different rates
are superimposed on ten realisations, with the longest one
emphasised.
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Figure 3. Comparison of simulations of the Kolmogorov
forward equations (black dots) with asymptotic results (red
solid lines). First column: Expected number of infectives
with a linear y-axis. Second column: Expected number of
infectives with a logarithmic y-axis. Third column: probabil-
ity density function for the extinction time. Fourth column:
distribution function for the extinction time. Rows represent
different values of N from 101 to 107 with R0 unscaled.
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Figure 4. Comparison of simulations of the Kolmogorov
forward equations (black dots) with asymptotic results (red
solid lines). First column: Expected number of infectives
with a linear y-axis. Second column: Expected number of
infectives with a logarithmic y-axis. Third column: probabil-
ity density function for the extinction time. Fourth column:
distribution function for the extinction time. Rows represent
different values of N from 101 to 107 with 1 − R0 scaling
approximately like N−1/3.
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Figure 5. Comparison of total number of infections CN
with N for (left) the parameter choices in Figure 3 above
and (right) the parameter choices in Figure 4 above. Cal-
culations for the path sum are shown as black circles, with
vertical black lines showing ±2 standard deviations. The as-
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Figure 6. Comparison of asymptotic mean number of in-
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P(XN (t) = 0) (from Theorem 1.1) for N = XN (0) = 107,
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Appendix A. Numerical evidence from real epidemics

We present here data from three real epidemics, pictured in Figure 1,
where the behaviour near extinction fits our description of a barely subcrit-
ical epidemic. We make no claim that the real epidemics are well-modelled
by any particular stochastic process. In reality, the available data will give
only a partial picture of the true spread of disease, and the parameter values
of any process will vary widely in time and geographical location.

Our first example is a simulation of the Ebola epidemic in 2014/15, based
on the real-time study on Ebola in Sierra Leone performed by Camacho et
al (2015).

The model is a stochastic compartmental model, with individuals in six
different classes: S (susceptible), E1 and E2 (two non-infectious latent
classes), Ic (infectious cases in the community), Ih (hospitalised infectious
cases) and R (removed). The transitions can be encoded as:

(S,E1) → (S − 1, E1 + 1) at rate β(Ic + Ih),

(E1, E2) → (E1 − 1, E2 + 1) at rate 2νE1,

(E2, Ic) → (E2 − 1, Ic + 1) at rate 2νE2,

(Ic, Ih) → (Ic − 1, Ih + 1) at rate τIc,

(Ih, R) → (Ih − 1, R+ 1) at rate γIh.

For instance, the first line represents an individual moving from class S to
class E1 at rate proportional to the number of infectives: we have simplified
the model for our purposes by assuming that the number of susceptibles is
constant throughout, and that the infection rate β is constant throughout
the epidemic.

The parameter values were fitted to data by Camacho et al (2015) using
a computationally intensive statistical framework in which β varies over
time: the overlaid curves in Figure 1 show that fixed β – and therefore fixed
R0 = β(γ−1 + τ−1) – does not work. The values derived from the data are
ν−1 = 9.4 days (so the latent period has a 2-Erlang distribution with mean
ν−1), τ−1 = 4.3 days and γ−1 = 6.9 days.

For the simplified model, the population means in each compartment obey
the ODEs
dEXE1

dt
= β(EXIc +XIh)− 2ν EXE1 ,

dEXE2

dt
= 2ν(EXE1 − EXE2) ,

dEXIc

dt
= 2ν EXE2 − τ EXIc ,

dEXIh

dt
= τ EXIc − γ EXIh .

(A.1)
Based on this model, we generated estimates for the total number of

infectives of Ebola over time. We took publicly available data on cumulative
incidence for Ebola in Sierra Leone, and assumed: (i) that individual cases
moved from Ic to Ih at some time t with uniform probability density in
the day before they are reported; (ii) that the latent period ended at a
time t − t1, where t1 is exponentially distributed with rate τ ; (iii) that the
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infectious period ended at a time t+t2, where t2 is exponentially distributed
with rate γ.

Simulating from this process ten times gives the black lines for the num-
ber of cases over time in Figure 1 (top plot), which are also compared to
numerical solutions to (A.1) for different values of R0, shown as coloured
lines.

Our other two examples are broad-brush pictures of the courses of well-
known epidemics, where we present simply the number of recorded cases in
each year. These examples are smallpox (Figure 1, middle plot), which was
subject to a successful global eradication campaign, and polio (Figure 1,
bottom plot), which is currently subject to a global eradication campaign
that will hopefully be successful soon. In these cases, we do not compare to
specific ODE models, but instead to exponential decay curves of the form
e−rt, for various values of r, which are shown as coloured lines.

For all three real examples, we see that the duration of the epidemics
after they have been brought under control is longer than might be predicted
from the smooth curves, which would be associated with straightforwardly
subcritical epidemics with much smaller extinction times, of order logN/µ.
We also see that the prevalence does not decay smoothly in time in its final
stages, but goes up and down several times before extinction.

We take the smallpox data as an example, to show how the data might
be seen to fit our predicted behaviour for a barely subcritical process in a
rough quantitative sense. The highly infectious period for smallpox is on
the order of a week, which corresponds to a value of µ−1 around 0.02 years.
The middle graph in Figure 1 shows the total number of cases in each year,
which is consistent with the number of cases remaining of order about 2000
over the period 1958-1973. Aggregating cases over full years obscures any
erratic behaviour within each year. It seems clear that the effective value
of R0 for the smallpox epidemic must have varied considerably over that
period, due to seasonal effects, changes in control measures both globally
and in response to local outbreaks, and other factors. However, the total
number of cases of smallpox over the 15-year period is around two million,
and the total number of cases at any time in 1973 is within a few thousand
of the number in 1958, indicating that the average value of R0 over this
period is within about 0.001 of 1. For a postulated average value of R0 of
0.999, our hypothesis would suggest a period of time of order 20 years before
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extinction, during which the number of cases would resemble a random walk
remaining of order at most 1000, which is a reasonable fit to the data shown.
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