236 research outputs found

    Switchable pi-coordination and C-H metallation in small-cavity macrocyclic uranium and thorium complexes

    Get PDF
    New, conformationally restricted ThIV and UIV complexes, [ThCl2(L)] and [UI2(L)], of the small-cavity, dipyrrolide, dianionic macrocycle trans-calix[2]benzene[2]pyrrolide (L)2− are reported and are shown to have unusual κ5:κ5 binding in a bent metallocene-type structure. Single-electron reduction of [UI2(L)] affords [UI(THF)(L)] and results in a switch in ligand binding from κ5-pyrrolide to η6-arene sandwich coordination, demonstrating the preference for arene binding by the electron-rich UIII ion. Facile loss of THF from [UI(THF)(L)] further increases the amount of U–arene back donation. [UI(L)] can incorporate a further UIII equivalent, UI3, to form the very unusual dinuclear complex [U2I4(L)] in which the single macrocycle adopts both κ5:κ5 and η6:κ1:η6:κ1 binding modes in the same complex. Hybrid density functional theory calculations carried out to compare the electronic structures and bonding of [UIIII(L)] and [UIII2I4(L)] indicate increased contributions to the covalent bonding in [U2I4(L)] than in [UI(L)], and similar U–arene interactions in both. MO analysis and QTAIM calculations find minimal U–U interaction in [U2I4(L)]. In contrast to the reducible U complex, treatment of [ThCl2(L)] with either a reductant or non-nucleophilic base results in metallation of the aryl rings of the macrocycle to form the (L−2H)4− tetraanion and two new and robust Th–C bonds in the –ate complexes [K(THF)2ThIV(μ-Cl)(L−2H)]2 and K[ThIV{N(SiMe3)2}(L−2H)]

    Evolutionary versatility of the avian neck

    Get PDF
    Bird necks display unparalleled levels of morphological diversity compared to other vertebrates, yet it is unclear what factors have structured this variation. Using three-dimensional geometric morphometrics and multivariate statistics, we show that the avian cervical column is a hierarchical morpho-functional appendage, with varying magnitudes of ecologically driven osteological variation at different scales of organization. Contrary to expectations given the widely varying ecological functions of necks in different species, we find that regional modularity of the avian neck is highly conserved, with an overall structural blueprint that is significantly altered only by the most mechanically demanding ecological functions. Nevertheless, the morphologies of vertebrae within subregions of the neck show more prominent signals of adaptation to ecological pressures. We also find that both neck length allometry and the nature of neck elongation in birds are different from other vertebrates. In contrast with mammals, neck length scales isometrically with head mass and, contrary to previous work, we show that neck elongation in birds is achieved predominantly by increasing vertebral lengths rather than counts. Birds therefore possess a cervical spine that may be unique in its versatility among extant vertebrates, one that, since the origin of flight, has adapted to function as a surrogate forelimb in varied ecological niches

    Changes in use of herbs and dietary supplements (HDS) among clinicians enrolled in an online curriculum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about clinicians' use of herbs and dietary supplements (HDS), how their personal HDS use changes with time and training, and how changes in their personal use affect their confidence or communication with patients about HDS.</p> <p>Methods</p> <p>We conducted a prospective cohort study of clinicians before and after an on-line curriculum about HDS in winter-spring, 2005.</p> <p>Results</p> <p>Of the 569 clinicians who completed surveys both at baseline and after the course, 25% were male and the average age was 42 years old; 88% used HDS before and after the course. The average number of supplements used fell slightly from 6.2 at baseline to 5.8 after the course (P < 0.01). The most commonly used supplements at baseline were: multivitamins (65%), calcium (42%), B vitamins (34%), vitamin C (34%), green tea (27%), fish oil (27%) and vitamin E (25%). Use of fish oil increased to 30% after the course (P = 0.01). Use of supplements traditionally used to treat colds decreased: vitamin C (34% to 27%), zinc (13% to 10%), and echinacea (7% to 5%, P < 0.05 for all three). Changes in personal HDS use were not associated with significant changes in confidence or communication with patients.</p> <p>Conclusion</p> <p>Many clinicians use HDS personally; use changes seasonally and to a small extent with professional education. Professional use of HDS is dynamic and seasonal. Additional research is needed to understand the impact of personal use on professional attitudes and behavior in populations with lower baseline uses of HDS.</p

    Why does the metabolic cost of walking increase on compliant substrates?

    Get PDF
    Walking on compliant substrates requires more energy than walking on hard substrates but the biomechanical factors that contribute to this increase are debated. Previous studies suggest various causative mechanical factors, including disruption to pendular energy recovery, increased muscle work, decreased muscle efficiency and increased gait variability. We test each of these hypotheses simultaneously by collecting a large kinematic and kinetic dataset of human walking on foams of differing thickness. This allowed us to systematically characterize changes in gait with substrate compliance, and, by combining data with mechanical substrate testing, drive the very first subject-specific computer simulations of human locomotion on compliant substrates to estimate the internal kinetic demands on the musculoskeletal system. Negative changes to pendular energy exchange or ankle mechanics are not supported by our analyses. Instead we find that the mechanistic causes of increased energetic costs on compliant substrates are more complex than captured by any single previous hypothesis. We present a model in which elevated activity and mechanical work by muscles crossing the hip and knee are required to support the changes in joint (greater excursion and maximum flexion) and spatio-temporal kinematics (longer stride lengths, stride times and stance times, and duty factors) on compliant substrates

    Why does the metabolic cost of walking increase on compliant substrates?

    Get PDF
    Walking on compliant substrates requires more energy than walking on hard substrates but the biomechanical factors that contribute to this increase are debated. Previous studies suggest various causative mechanical factors, including disruption to pendular energy recovery, increased muscle work, decreased muscle efficiency and increased gait variability. We test each of these hypotheses simultaneously by collecting a large kinematic and kinetic dataset of human walking on foams of differing thickness. This allowed us to systematically characterize changes in gait with substrate compliance, and, by combining data with mechanical substrate testing, drive the very first subject-specific computer simulations of human locomotion on compliant substrates to estimate the internal kinetic demands on the musculoskeletal system. Negative changes to pendular energy exchange or ankle mechanics are not supported by our analyses. Instead we find that the mechanistic causes of increased energetic costs on compliant substrates are more complex than captured by any single previous hypothesis. We present a model in which elevated activity and mechanical work by muscles crossing the hip and knee are required to support the changes in joint (greater excursion and maximum flexion) and spatio-temporal kinematics (longer stride lengths, stride times and stance times, and duty factors) on compliant substrates

    Organometallic neptunium(III) complexes

    Get PDF
    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    Get PDF
    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations

    Brain Phenotype of Transgenic Mice Overexpressing Cystathionine β-Synthase

    Get PDF
    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS

    Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome

    Get PDF
    Down's syndrome (DS), with an incidence of one in 800 live births, is the most common genetic disorder associated with mental retardation. This trisomy on chromosome 21 induces a variable phenotype in which the only common feature is the presence of mental retardation. The neural mechanisms underlying mental retardation might include defects in the formation of neuronal networks and neural plasticity. DS patients have alterations in the morphology, the density and the distribution of dendritic spines in the pyramidal neurons of the cortex. Our hypothesis is that the deficits in dendritic arborization observed in the principal neurons of DS patients and Ts65Dn mice (a model for DS that mimics most of the structural alterations observed in humans) may be mediated to some extent by changes in their inhibitory inputs. Different types of interneurons control different types of inhibition. Therefore, to understand well the changes in inhibition in DS, it is necessary to study the different types of interneurons separately. We have studied the expression of synaptophysin, Glutamic acid decarboxylase-67 (GAD-67) and calcium-binding protein-expressing cells in the primary somatosensory cortex of 4¿5 month old Ts65Dn mice. We have observed an increment of GAD67 immunoreactivity that is related mainly to an increment of calretinin-immunoreactive cells and among them the ones with bipolar morphology. Since there is a propensity for epilepsy in DS patients, this increase in interneurons might reflect an attempt by the system to block overexcitation rather than an increment in total inhibition and could explain the deficit in interneurons and principal cells observed in elderly DS patients
    corecore