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Abstract 

Studies of transuranic organometallic complexes provide particularly valuable insight into covalent 

contributions to the metal-ligand bonding, in which the subtle differences between the transuranium 25 

AnIII ions and their lighter lanthanide LnIII counterparts are of fundamental importance for 

effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has 

focused strongly on UIII with spectacular advances, that of the transuranics is significantly 

technically more challenging and has remained dormant. In the case of neptunium, it is limited 

mainly to NpIV. Here we report a range of new NpIII organometallics, and characterize their 30 

molecular and electronic structures. These studies suggest that the lower oxidation state of NpII is 

chemically accessible, and that NpIII complexes could act as single molecule magnets. Significant d- 

and f-electron contributions to key NpIII orbitals are found in comparison with lanthanide 

analogues, showing that fundamental Np organometallic chemistry can provide new insight into f-

element behaviour. 35 

 

 Studies of transuranic organometallic complexes with aromatic π-electron systems are particularly 

valuable to the understanding of the bonding, and physical and chemical properties of the actinides 

because they give insight into covalent contributions to the metal-ligand bonding1. The heavier, radiotoxic 

actinide elements exist primarily in the +3 oxidation state, and hence their chemical separation from LnIII 40 

ions in nuclear waste is very difficult. The selectivity of the best available AnIII extractants is attributed to 

subtly higher bonding covalency, but is not well understood and theory cannot yet make predictions. 

Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and seen spectacular 

advances2-4, that of the transuranics has remained dormant and, in the case of neptunium, is limited mainly 

to NpIV. The only known organometallic compounds of neptunium, the first transuranic element, are a 45 

handful of cyclopentadienyl complexes [Cp3NpX] (Cp = (Cp = cyclo-pentadiene anion, X = Cp, Cl, OMe, 

n-Bu, Ph)5-7, and the cyclooctatetraenyl sandwich [Np(COT)2] (COT = cyclo-octatetraene dianion)8. These 

compounds were milestones in helping understand actinide bonding, and [Np(COT)2] shows fascinating 
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magnetic bistability9. Analyses now standard in organometallic chemistry such as structural 

determinations by X-ray crystallography were determined for only a few NpIV complexes, and 1H NMR 50 

spectroscopic data reported in just a couple of cases. While exploratory reductions to the NpIII oxidation 

state afforded powders presumed to be solvated NpIIICp3 and K[Np(COT)2] respectively, only scant 

spectroscopic data, and no structural data exist for any organometallic NpIII complex10,11
.  The severe 

radiotoxicity of Np, the accessibility of its radionuclides, and the requirements to work with small sample 

sizes compound the traditional difficulties associated with handling air-sensitive, highly paramagnetic 55 

organometallic early actinide complexes. 

 Single arene - f-block π- and δ-(back)bonding interactions have been used for C-H bond 

functionalisation12, and to stabilise the unusually low formal oxidation state of UII [13], while bis(arene) 

sandwich molecules have been made for all areas of the periodic table except the actinides, where only 

predictions of stability exist14. A desire to better understand the subtlest actinide π- and δ-symmetry 60 

bonding interactions has led us to the flexible macrocycle H2L
Ar trans-calix[2]benzene[2]pyrrole15, which 

can geometrically and electronically mimic two cyclopentadienyl ions i.e. bis(η5-pyrrolyl), or a bis(η6-

arene) sandwich form16. Hybrid density functional theory (DFT) calculations found significant covalent 

bonding in both binding modes in the di-UIII adduct16. We have also used non-aqueous NpIII iodides17 to 

make magnetically coupled UIII and NpIII complexes that we could not structurally characterise18. We here 65 

demonstrate that organometallic ligands other than the cyclopentadienyl anion, i.e. (LAr)2–, can support a 

range of organometallic neptunium(III) complexes, and explore their redox chemistry and molecular and 

electronic structure and bonding.  

 

 70 
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Results and Discussion 75 

Synthesis and redox chemistry  

 

Figure 1 Synthesis of mono and dinuclear bis(arene)-bound Np(III) LAr complexes 1 and 2 from the 

spontaneous reduction of the NpIV starting material. Oxidation of 1 with silver chloride produces maroon-

coloured solutions consistent with [NpIV(LAr)Cl2] (1a) that gradually revert back to 1 and 2 over time. 80 

 

The reaction between 237NpCl4 and 1.5 equivs of dipotassium K2L
Ar affords the dark-red, crystalline, 

mononuclear NpIII complex [(LAr)237NpCl] 1 in 46 % yield (theor. 50 %) (Figure 1), or in 84 % yield from 

the equimolar reaction between in situ generated 237NpCl3(THF)x and K2L
Ar in THF (tetrahydrofuran) at 

room temperature. Interestingly, the equimolar reaction between 237NpCl4 and K2L
Ar yields the dark red 85 

crystalline dinuclear NpIII complex [(LAr)237Np2Cl4(THF)3] 2 in 92 % yield. The 1H and 13C NMR spectra 

of 1 show C2v symmetry; the resonances are broadened and shifted due to the paramagnetic NpIII 5f4 ion, 

but assignable, proving that multinuclear NMR solution spectroscopy of organometallic NpIII is a useful 

analytical tool19.  

   90 

 Given that all previous organometallic chemistry of NpIV salts has retained the NpIV oxidation state, the 

spontaneous reduction to NpIII provides an excellent entry into organo-NpIII chemistry that avoids 

additional procedures with reductants such as potassium metal that were required in the previous 
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explorations. We account for the reduction by considering the ability of the flexible LAr to bind in a κ1-

configuration, in contrast to the cyclopentadienyl anion that rarely diverts from η5-coordination. This can 95 

allow a Np-L bond homolysis to occur, providing a reducing electron to Np and releasing the ligand as a 

radical. The use of coordinating THF in these reactions may have enabled the further replacement of 

chloride by (LAr)2- in a κ1-pyrrolide coordination mode. This is consistent with the yields and by-products, 

and the recent report of a decomposition product in SmIII(LAr) chemistry; [(LAr)(HLAr’)SmCl] contains one 

κ1-bound (HLAr)1- equivalent 20. 100 

 

 Single crystals of 1 and 2 were analysed by X-ray crystallography; the molecular structures (Figure 

2a,b) confirm the same η6-arene:κ1-pyrrolide binding mode to NpIII that was observed for the isotypic 

SmIII and UIII complexes. These are the first instances of the bis(arene) sandwich motif in a transuranic 

complex; 2 formally contains an additional equivalent of NpCl3(THF)3 through chloride-bridging. In the 105 

bis(η-arene) structures of 1 and 2 the Np-arene centroids are 2.601 Å in 1 and average 2.63 Å in 2, with 

further ligand interactions made with Np-N bond distances of 2.447(2) Å in 1 and 2.486(5), 2.496(6) Å in 

2. The arene sandwich (CntAr-Np-CntAr) angles, 174.20(4)° in 1 and 173.2(1)° in 2, are close to linear and 

similar to that found in the isotypic series [(LAr)UX] (four examples, range 173.4(3)–174.4(2)°) and 

[(LAr)SmCl] (175.95(8)°).  The mean Np-CAr separations in both 1 (2.95 Å) and 2 (3.01 and 2.96 Å) are 110 

remarkably similar to those in the isostructural [(LAr)UI] (range 2.95–2.98 Å) and [(LAr)SmCl] (2.98 Å). 

The difference in M-Cl bond distances between 1 and [(LAr)SmCl] is the same within standard 

uncertainties once normalised for the SmIII and NpIII radii21, and longer than in NpIV complexes22,23. Figure 

2c shows the molecular structure of complex 3, described below, which represents the first structural 

characterisation of a metallocene-type geometry for a NpIII
 centre. 115 
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 120 

(a)  (b)  

(c)  

Figure 2. The molecular structures of the three organometallic NpIII complexes confirming the first 

bis(arene) sandwich coordination motif for a transuranic ion and the first structural characterisation of a 

metallocene-type geometry for a NpIII centre: (a) [(LAr)NpCl] 1, (b) [(LAr)Np2Cl4(THF)3] 2 and (c) [K(dme)(LAr-
125 

H)Np(OMe)]2 3. Complex 1 is drawn face-on to show the bis(η6-arene) sandwich coordination geometry while 

complex 3 (see below for synthesis) is drawn side-on to show the switch to the bis(η5-pyrrolide) coordination 

geometry. A potassium counter-cation resides in the other pocket of the ligand in 3. Displacement ellipsoids are 

drawn at 50 % probability, ligand framework and coordinated solvents drawn as capped sticks, hydrogen atoms and 

lattice solvent are omitted for clarity. Selected distances (Å) and angles (°) for 1: Np1-Cl1 2.6694(9), Np1-N1 130 

2.447(2), Np1-Caryl range 2.853(2) to 3.010(3), Ct1-Np1-Ct1’ 174.20(4); For 2: Np1-Cl1 2.814(2), Np2-Cl1 2.864(2), 

Np2-N1 2.496(6), Np2-Caryl range 2.854(6) to 3.022(6), Ct1-Np2-Ct2 173.2(1); For 3: Np1-O1 2.288(9), Np1-C29 

2.660(13), Np1-Cpyrr range 2.757(12) to 2.998(11), K1-Caryl range 3.051(13) to 3.366(15), Ct1-Np1-Ct2 143.98(15). 

 

Given the strong stabilisation afforded to NpIII by (LAr)2-, and recent landmark syntheses of formally ThII 135 

and UII complexes13,24, we added the reductant NaK3 to a 1,2-dimethoxyethane (dme) solution of 1, which 

turned purple black, and precipitated KCl, Figure 3a.  The Vis-nIR spectrum of the supernatant (Figure 
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3b) has broad absorptions with extinction coefficients centred around 600 nm and 1275 nm, characteristic 

of d - f and d - * transitions and suggestive of the formation of the new formal oxidation state NpII in the 

neutral, arene-stabilised complex [(LAr)NpII(dme)] 3a. In contrast, higher oxidation state neptunium 140 

complexes have sharp transitions in the nIR region consistent with forbidden f-f transitions; the Vis-nIR of 

1 (Supplementary Figure S5) displays line-like absorptions with the low extinction coefficients (ε of the 

order of tens) expected for f - f transitions. Similar changes upon reduction of 6π-organometallic 

complexes have been seen for [K(2.2.2-cryptand)][(η-C5H4SiMe3)3M] (M = Ln, U)25 with the appearance 

of an absorption at 600 nm for M = U ( = 750 M-1 cm-1), and [K(2.2.2-cryptand)][Th{η5-C5H3(SiMe3)2-145 

1,3}3]
26 at 650 nm ( = 23000 M-1 cm-1). The putative NpII complex 3a is not stable in solution, and 

lightens in color to reddish-brown over 12 hours; the strongly absorbing Vis-nIR bands of 3a are replaced 

by new and weak absorptions in the region 780-1350 nm assigned to the new NpIII complex 

[K(dme)n{(LAr)NpII(OCH3)}]2 3 (Figure 3). Control reactions also support the assignment of the reducing 

electron being based on the metal rather than the ligand. The UVvis spectra of dme solutions of the 150 

dipotassium salt [K2L
Ar] treated with NaK3 contain a single broad band at 716 nm, the same as that of the 

solvated electron formed on contacting NaK3 with dme, that decay within minutes (supplementary figure 

S7).  All attempts (unpublished work) to reduce analogous thorium(IV) LAr complexes have been 

unsuccessful; the reduction potential of ThIV is usually estimated as around -3V, so ligand reduction would 

be anticipated where possible in organo-thorium chemistry. TD-DFT calculations on the reduction product 155 

were not pursued owing to the intrinsic unreliability of the approach for a system with five unpaired 5f 

electrons and (most likely) highly multiconfigurational excited states. Notably, solutions of 3a stored over 

NaK3 remain purple-black indefinitely (see photographs of 1 and 3a in supplementary figure S6), giving 

further weight to the capability of the ligand to support NpII under maintained reducing conditions. Small, 

black plate-shaped crystals of 3a isolated from these solutions gave only weak diffraction. 160 
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a)   

b)  
Figure 3. a) Reduction of 1 with NaK3 produces near-black solutions consistent with the formation of the 

new NpII complex [NpII(LAr)(dme)] 3a. The complex is thermally unstable and gradually converts to the metalated 165 

(LAr)3- NpIII aryl complex [K(dme)n{(LAr)NpII(OCH3)}]2 3 in which the LAr ligand adopts a metallocene-type geometry 

for the new NpIII centre. b) The Vis-NIR spectra of dme solutions of 1 and NaK3 recorded over time show the 

formation of 3a at 19 °C; the strong absorptions growing in around 600 nm and 1275 nm (see legend for time 

period between addition of reductant and recording of spectrum) bleach on transformation to 3 when the isolated 

sample is stored at ambient temperature in the absence of reducing agent. (237Np concentration 0.56 mM.) 170 

 The identity of 3 was confirmed by single crystal X-ray diffraction (Figure 2c above). The ligand is 

triply deprotonated as a result of the metalation of one arene (LAr-H)3–, and the [NpIII(OMe)] moiety is now 

bound in the ‘metallocene-type’ geometry provided by the two η5-bound pyrrolide groups 16. A dimer is 

formed through asymmetric methoxide bridging which has presumably arisen from the cleavage of dme. 

The shorter of the two Np-O bond lengths, 2.296(8) Å, is longer than the NpIV–OPh bond of 2.137(7) Å in 175 

Cp3Np(OPh)[27]. This O-C bond cleavage is common for reduced electropositive metal complexes, and 

supports the assignment of a reactive NpII centre in 3a. We have previously observed the double 
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metalation of LAr from the treatment of ThIV(LAr) complexes with either reductants or non-nucleophilic 

bases16, but the only occasion on which we have observed a An3+ cation to reside in the cavity provided by 

the two pyrrolides  (rather than the two arenes) is in the di-UIII adduct, UIII
2I4(L

Ar)16. In this latter case, the 180 

ligand undergoes a significant strain-energy penalty from the incorporation of two metal cations. 

 

Magnetic behaviour 

 We were curious as to whether the mononuclear neptunium(III) complex 1 could function as a single 

molecule magnet (SMM), i.e. exhibit slow relaxation of the magnetisation at low temperatures. Actinide 185 

metal cations offer an alternative SMM design approach by combining the best properties of 3d (sizeable 

exchange interaction)28 and 4f (large single-ion anisotropy) magnetic ions29, and it has even been 

suggested that all UIII complexes should possess inherent SMM character30,31. The imaginary part of the ac 

magnetic susceptibility of 1 is very small with respect to χdc (Figure 4); however, a significant increase 

below 10 K is clearly observed and may be attributed to a slowing down of the magnetization dynamics. 190 

This signifies that the onset of SMM behaviour should occur at temperatures lower than we can measure, 

i.e. 2 K.  

 

Figure 4. Ratio between the imaginary part of the ac magnetic susceptibility and the static (dc) 

susceptibility measured for [(LAr)NpCl] (1) as a function of temperature and for different frequencies. 195 

Regardless of frequency (see color legend), at around 10 K the direction of magnetisation of the sample can no 

longer keep up with the alternating magnetic field applied by the magnetometer, as the magnetic relaxation begins 
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to slow down. Inset: temperature (T) dependence of the dc magnetic susceptibility χ of (1) plotted as χT vs T (open 

dots: experimental data measured with a magnetic field of 1 T, line: ligand-field calculation). 

 200 

Computational bonding analysis 

Complex 1, the 4f SmIII complex [SmCl(LAr)]20 and our 5f UIII systems provide the first opportunity to 

explore and validate the bonding in an isostructural set of f-block organometallics featuring a transuranic 

element. DFT quantum chemical calculations were therefore undertaken on 1c-MCl (M = Sm, U, Np), 1c-

SmI and 1c-NpI. We have previously described the valence electronic structure of 1c-UI in detail16. For 205 

all six systems, modest and consistent metal d orbital contributions are found to the M-N and M-arene 

bonding, the latter being about half of that in a comparable transition metal bonding situation. By contrast, 

the M-halogen bonding orbitals show much larger variations in covalency, with significant increases in 

metal d (in M-X ) and metal f (in M-X  for 1c-MI) from Sm to U and Np. 

 210 

 By contrast to the primarily ligand-localised valence MOs, the canonical valence molecular orbital 

(MO) energy level diagrams for the  spin orbitals of the three 1c-MI complexes show there is significant 

variation in the energies of the metal f-based orbitals (Figure 5). In 1c-UI, the three 5f electrons are the 

least stable, while in 1c-NpI the four, singly occupied 5f-based orbitals drop below the highest occupied 

pyrrolide levels. In 1c-SmI, the 4f-based orbitals are significantly more stable than any of the other 215 

valence orbitals considered. In keeping with the traditional picture of the bonding in lanthanide and 

actinide systems32, the almost core-like 4f orbitals of SmIII are too low in energy and radially contracted to 

participate in bonding, while the 5f orbitals of the early actinides have greater radial extension and 

sufficiently higher energies to enable metal-ligand orbital overlap. Hence, although the bonding in f 

element molecules is predominantly ionic, the early actinides can form more covalent bonds than their 220 

lanthanide analogues.  
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Figure 5. Molecular orbital (MO) diagrams for 1c-MI (M = Sm, U, Np). Horizontal lines represent the energies of 225 

the -spin MOs (in electronvolts, eV), and their principal character is indicated by the line and text colour: cyan = 

pyrrolideπ, black = iodide-p, yellow = arene-π, magenta = arene-M π, blue = pyrrolide-M σ, red = metal-f. The 

number of solid red lines indicates the number of electrons of predominant metal f character; 4f5 (Sm), 5f3 (U), 5f4 

(Np). The dashed red lines highlight the dramatic change in energy as a function of metal. The black numbers 

beside the iodide pπ and pπ-based MOs indicate their total metal atomic orbital content (%),highlighting the 230 

substantial increases in metal contribution from Sm-U-Np. The image on the right is an iodide pπ-based MO of 1c-

NpI, containing a 17 % Np 5f covalent contribution (H omitted for clarity, MO isosurface value = 0.035). Red and 

green indicate the MO phases. The image on the left is the analogous MO for 1c-SmI; it contains almost no metal 4f 

contribution (2 %), indicating an ionic interaction. MOs lying between the pyrrolide-M σ and 4f levels in energy in 1c-

SmI are omitted. Data for 1c-UI from the literature.16 235 

 

 The deviations of metal spin densities from the values expected for formal oxidation states can provide a 

measure of covalency33,34. Here, Hirshfeld, Mulliken and Quantum Theory of Atoms-in-Molecules 

(QTAIM) calculations show small deviations which have been explored further by examination of the 

metal contributions to key valence MOs (Extended Data Table 3). In 1c-MI, the principal character of 240 

these MOs is generally unambiguous, although more delocalisation is present in 1c-MCl. The metal 
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content of the metal-arene  bonding orbitals is remarkably similar in all six target systems (6 to 8 %) and 

is largely d-based, in agreement with that proposed for the hypothetical U(C6H6)2
14. These values are 

about half that in the classical d-block W(6-C6H6)2, which we calculate to have 16 % metal 5d character 

in the e1g metal-ring  bonding orbitals. By contrast to the M-arene  orbitals, only the metal f orbitals 245 

contribute to the halogen p-based MOs, with significant variation across the metals; the f character is 

almost negligible (around 3 %) in all the metal chlorides 1c-MCl and 1c-SmI but rises sharply through 1c-

UI to 17 % 5f in 1c-NpI. The principal metal contributor to the M-X  bonding MOs is d in all cases bar 

1c-NpI, and there is generally more metal content in these MOs than in the  type levels. As with the 

latter, there is a significant (19 %, of which 8 % d and 11 % f) metal contribution to the Np-I  bonding 250 

orbital in 1c-NpI. 

It is increasingly recognised that metal-ligand covalency may be either energy-driven or overlap-driven, 

or potentially a combination of both35. The former arises when atomic orbitals on metal and ligand have 

very similar energies but little spatial overlap, while the latter involves significant orbital overlap. The 

QTAIM, an electron density-based approach that we have employed extensively to study covalency in the 255 

f block36, provides us with a means to distinguish these covalency mechanisms; overlap-driven covalency 

should be accompanied by an increase in the electron density in the internuclear bonding region, while 

energy-driven covalency should not. We were therefore keen to establish if the differences in the 

metal-halogen orbital compositions seen within the present organometallic systems are mirrored by the 

QTAIM metrics, particularly in light of our previous studies of other organo f element systems which have 260 

shown the orbital composition and QTAIM data to paint contrasting pictures34. The absolute values of the 

M-X bond critical point electron ( and energy densities (H) are small (Extended Data Table 4), 

indicating largely ionic bonds at the QTAIM level. That said, and in agreement with the increasing metal 

contributions to the M-X bonding MOs, there are increases in both  and H from Sm to U and Np for a 

given halogen, and in delocalisation indices (a QTAIM measure of bond order, Extended Data Table 4) 265 

from the lanthanide to the actinides. This shows that the covalency explanation presented here for the 

neptunium iodide arises from a spatial overlap of the orbitals, rather than from accidental energy 
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degeneracy. 

 

 Collectively, these results show a range of unanticipated behaviours, both chemically and electronically, 270 

for the Np(III) ion in an organometallic environment. The new redox chemistry, unusual magnetic 

behaviour and covalency in the bonding that we have been able to explore compensates for the additional 

complexity of handling this radionuclide, and should open up new vistas in anaerobic neptunium science. 

 
 275 

Methods 
 
Caution! Compounds of the 237Np isotope represents a potential health risk owing to α emission (4.958 

MeV, t1/2 = 2.14 × 106 years, a = 0.7 mCi g-1) and its decay to 233Pa which is a potent β emitter (0.570 

MeV, t1/2 = 26.97 days, a = 21 kCi g-1). Handling of the 237Np radioisotope should be undertaken in a 280 

properly regulated and controlled radiological facility, in this case in the radiochemical laboratories at the 

Joint Research Centre (JRC) – Institute of Transuranium Elements (ITU). Unsealed radioactive 

compounds were manipulated in dinitrogen filled (99+ %), negative-pressure radiological gloveboxes 

containing a separate high-vacuum/argon double manifold which could be used to maintain a positive 

pressure of inert gas during the handling of reagents and solutions with more standard Schlenk techniques. 285 

A UV-Vis-nIR optical chamber and an ATR-IR spectrometer were contained within radiological 

gloveboxes to enable direct measurements. NMR spectra were recorded promptly on solutions in 

fluoropolymer NMR tube liners (degassed at 140 °C, 6 × 10-4 mbar, 12 h) inserted into a standard 

borosilicate glass NMR tube placed in a PVC bag, which was sealed by welding. In spite of the 

drying/degassing precautions, the NpIII samples show evidence of reaction with the inert liners over the 290 

course of a day. 

Syntheses of the complexes were carried out in Teflon tap-equipped glass ampoules between the 

appropriate amount of NpIV (or in situ-generated NpIII) chloride and dipotassium salt of the ligand LAr in a 

suitable dry, and oxygen-free aprotic solvent. Work-up of the solutions afforded the target complexes as 

powders or crystalline materials which were fully characterised by a suite of NMR, IR, UVVis-nIR 295 

spectroscopies, SQUID magnetometry and single crystal X-ray diffraction where possible. In-situ 

oxidations or reductions were carried out respectively by addition of AgCl or K or NaK3 alloy to THF or 

dme solutions of complexes.  Density functional theory and atoms-in-molecules computational analyses 

were carried out on the mononuclear complexes complex [(LAr)MIIICl] for M = Sm, U, and Np after 
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confirmation that the computed molecular geometries were in excellent agreement with the available 300 

experimental data. 

Full descriptions of the methods, as well as additional tables (4) and figures (9), are given in the 

Supplementary Information. 

 
 305 
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