3,140 research outputs found
Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.
During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A
Who should be prioritized for renal transplantation?: Analysis of key stakeholder preferences using discrete choice experiments
Background
Policies for allocating deceased donor kidneys have recently shifted from allocation based on Human Leucocyte Antigen (HLA) tissue matching in the UK and USA. Newer allocation algorithms incorporate waiting time as a primary factor, and in the UK, young adults are also favoured. However, there is little contemporary UK research on the views of stakeholders in the transplant process to inform future allocation policy. This research project aimed to address this issue.
Methods
Discrete Choice Experiment (DCE) questionnaires were used to establish priorities for kidney transplantation among different stakeholder groups in the UK. Questionnaires were targeted at patients, carers, donors / relatives of deceased donors, and healthcare professionals. Attributes considered included: waiting time; donor-recipient HLA match; whether a recipient had dependents; diseases affecting life expectancy; and diseases affecting quality of life.
Results
Responses were obtained from 908 patients (including 98 ethnic minorities); 41 carers; 48 donors / relatives of deceased donors; and 113 healthcare professionals. The patient group demonstrated statistically different preferences for every attribute (i.e. significantly different from zero) so implying that changes in given attributes affected preferences, except when prioritizing those with no rather than moderate diseases affecting quality of life. The attributes valued highly related to waiting time, tissue match, prioritizing those with dependents, and prioritizing those with moderate rather than severe diseases affecting life expectancy. Some preferences differed between healthcare professionals and patients, and ethnic minority and non-ethnic minority patients. Only non-ethnic minority patients and healthcare professionals clearly prioritized those with better tissue matches.
Conclusions
Our econometric results are broadly supportive of the 2006 shift in UK transplant policy which emphasized prioritizing the young and long waiters. However, our findings suggest the need for a further review in the light of observed differences in preferences amongst ethnic minorities, and also because those with dependents may be a further priority.</p
Robot rights? Towards a social-relational justification of moral consideration \ud
Should we grant rights to artificially intelligent robots? Most current and near-future robots do not meet the hard criteria set by deontological and utilitarian theory. Virtue ethics can avoid this problem with its indirect approach. However, both direct and indirect arguments for moral consideration rest on ontological features of entities, an approach which incurs several problems. In response to these difficulties, this paper taps into a different conceptual resource in order to be able to grant some degree of moral consideration to some intelligent social robots: it sketches a novel argument for moral consideration based on social relations. It is shown that to further develop this argument we need to revise our existing ontological and social-political frameworks. It is suggested that we need a social ecology, which may be developed by engaging with Western ecology and Eastern worldviews. Although this relational turn raises many difficult issues and requires more work, this paper provides a rough outline of an alternative approach to moral consideration that can assist us in shaping our relations to intelligent robots and, by extension, to all artificial and biological entities that appear to us as more than instruments for our human purpose
Human preferences for sexually dimorphic faces may be evolutionarily novel
This article has been made available through the Brunel Open Access Publishing Fund.A large literature proposes that preferences for exaggerated sex typicality in human faces (masculinity/femininity) reflect a long evolutionary history of sexual and social selection. This proposal implies that dimorphism was important to judgments of attractiveness and personality in ancestral environments. It is difficult to evaluate, however, because most available data come from largescale, industrialized, urban populations. Here, we report the results for 12 populations with very diverse levels of economic development. Surprisingly, preferences for exaggerated sex-specific traits are only found in the novel, highly developed environments. Similarly, perceptions that masculine males look aggressive increase strongly with development, specifically, urbanization. These data challenge the hypothesis that facial dimorphism was an important ancestral signal of heritable mate value. One possibility is that highly developed environments provide novel opportunities to discern relationships between facial traits and behavior by exposing individuals to large numbers of unfamiliar faces, revealing patterns too subtle to detect with smaller samples
Legible London: mobilising the pedestrian
This chapter examines the design of the Legible London pedestrian wayfinding system. Overseen by Transport for London (TfL), this innovative scheme for enabling walking has developed from an early prototype study in 2007 to become a key part of transport policy in the UK’s capital city (AIG 2006, 2007; Arquati 2008; TfL 2014). An integrated combination of signs, pedestrian focused mapping and other directional information, Legible London has two complementary aims; to help people plan journeys on foot; and to give people the confidence to walk and explore. The scheme consists of a city-wide, consistent, pedestrian navigation system encompassing on-street wayfinding elements supported by identical information in public transport nodes (e.g. tube stations and bus stops) and paper based products as well as ongoing development of the provision of digital mapping information. The current on-street system is comprised of a mixture of information boards, known as ‘liths’ that come in a standardised range of sizes (see Figure 3.1), directional fingerposts, wall mounted signs and a range of supporting printed maps located in bus stops and inside tube stations. Information on all liths is presented in a hierarchical fashion: a top yellow beacon locates the sign in busy urban environments, directional information is given to nearby points of interest (replicating traditional finger signs), whilst differently scaled ‘planner’ and ‘finder’ maps locate the lith within 15 minute and 5 minute walk scales respectively. A street index also is provided
Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons
One of the most remarkable results of quantum mechanics is the fact that
many-body quantum systems may exhibit phase transitions even at zero
temperature. Quantum fluctuations, deeply rooted in Heisenberg's uncertainty
principle, and not thermal fluctuations, drive the system from one phase to
another. Typically, the relative strength of two competing terms in the
system's Hamiltonian is changed across a finite critical value. A well-known
example is the Mott-Hubbard quantum phase transition from a superfluid to an
insulating phase, which has been observed for weakly interacting bosonic atomic
gases. However, for strongly interacting quantum systems confined to
lower-dimensional geometry a novel type of quantum phase transition may be
induced for which an arbitrarily weak perturbation to the Hamiltonian is
sufficient to drive the transition. Here, for a one-dimensional (1D) quantum
gas of bosonic caesium atoms with tunable interactions, we observe the
commensurate-incommensurate quantum phase transition from a superfluid
Luttinger liquid to a Mott-insulator. For sufficiently strong interactions, the
transition is induced by adding an arbitrarily weak optical lattice
commensurate with the atomic granularity, which leads to immediate pinning of
the atoms. We map out the phase diagram and find that our measurements in the
strongly interacting regime agree well with a quantum field description based
on the exactly solvable sine-Gordon model. We trace the phase boundary all the
way to the weakly interacting regime where we find good agreement with the
predictions of the 1D Bose-Hubbard model. Our results open up the experimental
study of quantum phase transitions, criticality, and transport phenomena beyond
Hubbard-type models in the context of ultracold gases
Sea level: measuring the bounding surfaces of the ocean
The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea level change, this paper focuses on contributions from geodesy and the role of the ocean’s bounding surfaces: the sea surface and the Earth’s crust
Active wetting of epithelial tissues
Development, regeneration and cancer involve drastic transitions in tissue
morphology. In analogy with the behavior of inert fluids, some of these
transitions have been interpreted as wetting transitions. The validity and
scope of this analogy are unclear, however, because the active cellular forces
that drive tissue wetting have been neither measured nor theoretically
accounted for. Here we show that the transition between 2D epithelial
monolayers and 3D spheroidal aggregates can be understood as an active wetting
transition whose physics differs fundamentally from that of passive wetting
phenomena. By combining an active polar fluid model with measurements of
physical forces as a function of tissue size, contractility, cell-cell and
cell-substrate adhesion, and substrate stiffness, we show that the wetting
transition results from the competition between traction forces and contractile
intercellular stresses. This competition defines a new intrinsic lengthscale
that gives rise to a critical size for the wetting transition in tissues, a
striking feature that has no counterpart in classical wetting. Finally, we show
that active shape fluctuations are dynamically amplified during tissue
dewetting. Overall, we conclude that tissue spreading constitutes a prominent
example of active wetting --- a novel physical scenario that may explain
morphological transitions during tissue morphogenesis and tumor progression
Association between footwear use and neglected tropical diseases: a systematic review and meta-analysis
BACKGROUND
The control of neglected tropical diseases (NTDs) has primarily focused on preventive chemotherapy and case management. Less attention has been placed on the role of ensuring access to adequate water, sanitation, and hygiene and personal preventive measures in reducing exposure to infection. Our aim was to assess whether footwear use was associated with a lower risk of selected NTDs.
METHODOLOGY
We conducted a systematic review and meta-analysis to assess the association between footwear use and infection or disease for those NTDs for which the route of transmission or occurrence may be through the feet. We included Buruli ulcer, cutaneous larva migrans (CLM), leptospirosis, mycetoma, myiasis, podoconiosis, snakebite, tungiasis, and soil-transmitted helminth (STH) infections, particularly hookworm infection and strongyloidiasis. We searched Medline, Embase, Cochrane, Web of Science, CINAHL Plus, and Popline databases, contacted experts, and hand-searched reference lists for eligible studies. The search was conducted in English without language, publication status, or date restrictions up to January 2014. Studies were eligible for inclusion if they reported a measure of the association between footwear use and the risk of each NTD. Publication bias was assessed using funnel plots. Descriptive study characteristics and methodological quality of the included studies were summarized. For each study outcome, both outcome and exposure data were abstracted and crude and adjusted effect estimates presented. Individual and summary odds ratio (OR) estimates and corresponding 95% confidence intervals (CIs) were calculated as a measure of intervention effect, using random effects meta-analyses.
PRINCIPAL FINDINGS
Among the 427 studies screened, 53 met our inclusion criteria. Footwear use was significantly associated with a lower odds of infection of Buruli ulcer (OR=0.15; 95% CI: 0.08-0.29), CLM (OR=0.24; 95% CI: 0.06-0.96), tungiasis (OR=0.42; 95% CI: 0.26-0.70), hookworm infection (OR=0.48; 95% CI: 0.37-0.61), any STH infection (OR=0.57; 95% CI: 0.39-0.84), strongyloidiasis (OR=0.56; 95% CI: 0.38-0.83), and leptospirosis (OR=0.59; 95% CI: 0.37-0.94). No significant association between footwear use and podoconiosis (OR=0.63; 95% CI: 0.38-1.05) was found and no data were available for mycetoma, myiasis, and snakebite. The main limitations were evidence of heterogeneity and poor study quality inherent to the observational studies included.
CONCLUSIONS/SIGNIFICANCE
Our results show that footwear use was associated with a lower odds of several different NTDs. Access to footwear should be prioritized alongside existing NTD interventions to ensure a lasting reduction of multiple NTDs and to accelerate their control and elimination.
PROTOCOL REGISTRATION
PROSPERO International prospective register of systematic reviews CRD42012003338
Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests
Large-scale synchronous variations in community dynamics are well documented for a vast array of organisms, but are considerably less understood for forest trees. Because of temporal variations in canopy gap dynamics, forest communities—even old-growth ones—are never at equilibrium at the stand scale. This paucity of equilibrium may also be true at the regional scale. Our objectives were to determine (1) if nonequilibrium dynamics caused by temporal variations in the formation of canopy gaps are regionally synchronized, and (2) if spatiotemporal variations in canopy gap formation aVect the relative abundance of tree species in the understory. We examined these questions by analyzing variations in the suppression and release history of Acer saccharum Marsh. and Fagus grandifolia Ehrh. from 481 growth series of understory saplings taken from 34 mature stands. We observed that (1) the proportion of stems in release as a function of time exhibited a U-shaped pattern over the last 35 years, with the lowest levels occurring during 1975–1985, and that (2) the response to this in terms of species composition was that A. saccharum became more abundant at sites that had the highest proportion of stems in release during 1975–1985. We concluded that the understory dynamics, typically thought of as a stand-scale process, may be regionally synchronized
- …
