50 research outputs found

    Gender Based Within-Household Inequality in Childhood Immunization in India: Changes over Time and across Regions

    Get PDF
    Background and Objectives: Despite India’s substantial economic growth in the past two decades, girls in India are discriminated against in access to preventive healthcare including immunizations. Surprisingly, no study has assessed the contribution of gender based within-household discrimination to the overall inequality in immunization status of Indian children. This study therefore has two objectives: to estimate the gender based within-household inequality (GWHI) in immunization status of Indian children and to examine the inter-regional and inter-temporal variations in the GWHI. Data and Methods: The present study used households with a pair of male-female siblings (aged 1–5 years) from two rounds of National Family Health Survey (NFHS, 1992–93 and 2005–06). The overall inequality in the immunization status (after controlling for age and birth order) of children was decomposed into within-households and between-households components using Mean log deviation to obtain the GWHI component. The analysis was conducted at the all-India level as well as for six specified geographical regions and at two time points (1992–93 and 2005–06). Household fixed-effects models for immunization status of children were also estimated. Results and Conclusions: Findings from household fixed effects analysis indicated that the immunization scores of girls were significantly lower than that of boys. The inequality decompositions revealed that, at the all-India level, the absolute level of GWHI in immunization status decreased from 0.035 in 1992–93 to 0.023 in 2005–06. However, as a percentage o

    Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.)

    Get PDF
    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2–20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics

    Efficacious and Safe Tissue-Selective Controlled Gene Therapy Approaches for the Cornea

    Get PDF
    Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×1012 vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and untreated control corneas. These findings suggest that defined gene therapy approaches are safe for delivering genes into keratocytes in vivo and has potential for treating corneal disorders in human patients

    Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles

    Get PDF
    Warm mix asphalt (WMA) is gaining increased attention in the asphalt paving industry as an eco-friendly and sustainable technology. WMA technologies are favorable in producing asphalt mixtures at temperatures 20–60 °C lower in comparison to conventional hot mix asphalt. This saves non-renewable fossil fuels, reduces energy consumption, and minimizes vapors and greenhouse gas emissions in the production, placement and conservation processes of asphalt mixtures. At the same time, this temperature reduction must not reduce the performance of asphalt pavements in-field. Low aging resistance, high moisture susceptibility, and low durability are generally seen as substantial drawbacks of WMA, which can lead to inferior pavement performance, and increased maintenance costs. This is partly due to the fact that low production temperature may increase the amount of water molecules trapped in the asphalt mixture. As a potential remedy, here we use fumed silica nanoparticles (FSN) have shown excellent potential in enhancing moisture and aging susceptibility of asphalt binders. In this study, asphalt binder modification by means of FSN was investigated, considering the effects of short-term and long-term aging on the rheological, thermal, and microstructural binder properties. This research paves the way for optimizing WMA by nanoparticles to present enhanced green asphalt technology

    Genome engineering for improved recombinant protein expression in Escherichia coli

    Get PDF

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    High- and Intermediate-Temperature Performance of Asphalt Binder Containing Carbon Nanotube Using Different Rheological Approaches

    No full text
    The present research work was undertaken to evaluate the rutting performance of carbon nanotube (CNT)-modified asphalt binders. Additionally, intermediate-temperature performance, aging resistivity potential, and high-temperature storage stability were also evaluated. Reported literature on rutting performance of CNT-modified asphalt binders is mainly based on the Superpave rutting parameter (G*/sin), which does not account for the recovery aspect of binder. The paper first highlights the importance of the elastic response of CNT-modified asphalt binders for better understanding about its rutting performance. Further, different approaches such as the evaluation of zero shear viscosity (ZSV), creep test, and multiple stress creep recovery (MSCR) were utilized to reach appropriate conclusions. A recently developed approach, linear amplitude sweep (LAS), was used for evaluating intermediate-temperature performance. The CNT was varied as 0, 0.4, 0.75, 1.5, and 2.25% by the weight of control binder. The G*/sin value was found to increase until 1.5% CNT content; however, the addition of 2.25% CNT resulted in decreased G*/sin, indicating reduced rutting performance at higher CNT content. Contrary to the G*/sin trend, significant improvement in recovery value was observed for all CNT percentages. Further, based on detailed analysis carried out for different rheological parameters such as ZSV value (evaluated using the steady shear approach), deformation resistivity potential from creep test, recovery (R), and nonrecoverable creep compliance (Jnr) from the MSCR test, CNT addition to the control binder showed significant improvement in rutting resistivity potential for all CNT percentages. Although ZSV value significantly improved with the addition of CNT, the increase in CNT content showed an early transition from Newtonian to non-Newtonian behavior. Further, analysis for stress sensitivity was carried based on the R and Jnr values obtained from the MSCR test, which showed an increase in stress sensitivity with the addition of CNT to the control binder. The need for improvement in the current protocol used for evaluating stress sensitivity of asphalt binder (based on the MSCR test) has also been discussed. Improvement in intermediate-temperature performance evaluated through LAS test was also observed. Also, CNT addition to asphalt binder was found to be stable under high-temperature storage conditions. Overall, improvement in high- and intermediate-temperature performance can be expected with the addition of CNT to the control binder

    Development of empirical model for predicting G*/Sin delta and viscosity value for nanoclay and Carbon Nano Tube modified asphalt binder

    No full text
    The present research work was undertaken to develop a simple empirical model to evaluate superpave rutting factor (G*/Sin delta) and viscosity value for Nano Clay (NC) and Carbon Nano Tube (CNT) modified asphalt binders. The amount of NC was varied as 0%, 2%, 4% and 6%, while CNT was varied as 0%, 0.4%, 0.75%, 1.5% and 2.25% by the weight of control binder. Nanomaterial factors (NCf for NC modified and CNTf for CNT modified asphalt binder) and temperature factors were evaluated to develop the final empirical model for G*/Sin delta and viscosity. NC factor (NCf) as well as CNT factor (CNTf) were found to have exponential variation for viscosity model. In case of G*/Sin delta model, CNTf found to have quadratic variation due to reduction in stiffness value at higher CNT doses, whereas, NCi showed exponential variation. Development of empirical model for evaluating G*/Sin delta and viscosity value for NC and CNT modified asphalt binders has been successfully demonstrated in the present paper. Overall, it is expected that the proposed models may be helpful to practicing engineers for making judicious decision on selection of amount of NC or CNT to improve rutting and workability requirement of asphalt binder. 2018 Elsevier Ltd. All rights reserved
    corecore