2,268 research outputs found

    Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.

    Get PDF
    SummaryHypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons

    Thresholds for Abdominal Aortic Aneurysm Repair in England and the United States.

    Get PDF
    Background Thresholds for repair of abdominal aortic aneurysms vary considerably among countries. Methods We examined differences between England and the United States in the frequency of aneurysm repair, the mean aneurysm diameter at the time of the procedure, and rates of aneurysm rupture and aneurysm-related death. Data on the frequency of repair of intact (nonruptured) abdominal aortic aneurysms, in-hospital mortality among patients who had undergone aneurysm repair, and rates of aneurysm rupture during the period from 2005 through 2012 were extracted from the Hospital Episode Statistics database in England and the U.S. Nationwide Inpatient Sample. Data on the aneurysm diameter at the time of repair were extracted from the U.K. National Vascular Registry (2014 data) and from the U.S. National Surgical Quality Improvement Program (2013 data). Aneurysm-related mortality during the period from 2005 through 2012 was determined from data obtained from the Centers for Disease Control and Prevention and the U.K. Office of National Statistics. Data were adjusted with the use of direct standardization or conditional logistic regression for differences between England and the United States with respect to population age and sex. Results During the period from 2005 through 2012, a total of 29,300 patients in England and 278,921 patients in the United States underwent repair of intact abdominal aortic aneurysms. Aneurysm repair was less common in England than in the United States (odds ratio, 0.49; 95% confidence interval [CI], 0.48 to 0.49; P<0.001), and aneurysm-related death was more common in England than in the United States (odds ratio, 3.60; 95% CI, 3.55 to 3.64; P<0.001). Hospitalization due to an aneurysm rupture occurred more frequently in England than in the United States (odds ratio, 2.23; 95% CI, 2.19 to 2.27; P<0.001), and the mean aneurysm diameter at the time of repair was larger in England (63.7 mm vs. 58.3 mm, P<0.001). Conclusions We found a lower rate of repair of abdominal aortic aneurysms and a larger mean aneurysm diameter at the time of repair in England than in the United States and lower rates of aneurysm rupture and aneurysm-related death in the United States than in England. (Funded by the Circulation Foundation and others.)

    Elective Open Suprarenal Aneurysm Repair in England from 2000 to 2010 an Observational Study of Hospital Episode Statistics

    Get PDF
    Background: Open surgery is widely used as a benchmark for the results of fenestrated endovascular repair of complex abdominal aortic aneurysms (AAA). However, the existing evidence stems from single-centre experiences, and may not be reproducible in wider practice. National outcomes provide valuable information regarding the safety of suprarenal aneurysm repair. Methods: Demographic and clinical data were extracted from English Hospital Episodes Statistics for patients undergoing elective suprarenal aneurysm repair from 1 April 2000 to 31 March 2010. Thirty-day mortality and five-year survival were analysed by logistic regression and Cox proportional hazards modeling. Results: 793 patients underwent surgery with 14% overall 30-day mortality, which did not improve over the study period. Independent predictors of 30-day mortality included age, renal disease and previous myocardial infarction. 5-year survival was independently reduced by age, renal disease, liver disease, chronic pulmonary disease, and known metastatic solid tumour. There was significant regional variation in both 30-day mortality and 5-year survival after risk-adjustment. Regional differences in outcome were eliminated in a sensitivity analysis for perioperative outcome, conducted by restricting analysis to survivors of the first 30 days after surgery. Conclusions: Elective suprarenal aneurysm repair was associated with considerable mortality and significant regional variation across England. These data provide a benchmark to assess the efficacy of complex endovascular repair of supra-renal aneurysms, though cautious interpretation is required due to the lack of information regarding aneurysm morphology. More detailed study is required, ideally through the mandatory submission of data to a national registry of suprarenal aneurysm repair

    Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.

    Get PDF
    SummaryHypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons

    The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy

    Get PDF
    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding

    Asynchronous, Photometric Feature Tracking using Events and Frames

    Full text link
    We present a method that leverages the complementarity of event cameras and standard cameras to track visual features with low-latency. Event cameras are novel sensors that output pixel-level brightness changes, called "events". They offer significant advantages over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of microseconds. However, because the same scene pattern can produce different events depending on the motion direction, establishing event correspondences across time is challenging. By contrast, standard cameras provide intensity measurements (frames) that do not depend on motion direction. Our method extracts features on frames and subsequently tracks them asynchronously using events, thereby exploiting the best of both types of data: the frames provide a photometric representation that does not depend on motion direction and the events provide low-latency updates. In contrast to previous works, which are based on heuristics, this is the first principled method that uses raw intensity measurements directly, based on a generative event model within a maximum-likelihood framework. As a result, our method produces feature tracks that are both more accurate (subpixel accuracy) and longer than the state of the art, across a wide variety of scenes.Comment: 22 pages, 15 figures, Video: https://youtu.be/A7UfeUnG6c

    Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

    Get PDF
    Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications from high temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers due to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in-situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, improving our understanding of real magnetic materials.Comment: 12 pages, 9 figure

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response
    • …
    corecore