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Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, and Markus Greiner∗

Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
(Dated: May 17, 2011)

Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of
modern condensed matter physics, with implications from high temperature superconductors to
spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is
computationally intractable on classical computers due to the extreme complexity arising from quan-
tum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas
confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo
a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin
mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a param-
agnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between
the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase
the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation
is observed through both in-situ site-resolved imaging and noise correlation measurements. By
demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate fur-
ther investigations of magnetic models using ultracold atoms, improving our understanding of real
magnetic materials.

Ensembles of quantum spins arranged on a lattice and
coupled to one another through magnetic interactions
constitute a paradigmatic model-system in condensed
matter physics. Such systems produce a rich array of
magnetically-ordered ground states such as paramagnets,
ferromagnets and antiferromagnets. Certain geometries
and interactions induce competition between these order-
ings in the form of frustration, resulting in spin liquids[1]
and spin glasses[2], as well as phases with topological
order[3]. Varying system parameters can induce quan-
tum phase transitions between the various phases[4]. A
deeper understanding of the competition and resulting
transitions between magnetic phases would provide valu-
able insights into the properties of complex materials
such as high-temperature superconductors[5], and more
generally into the intricate behaviours that can emerge
when many simple quantum mechanical objects interact
with one another.

Studying quantum phase transitions of magnetic con-
densed matter systems is hindered by the complex struc-
ture and interactions present in such systems, as well as
the difficulty of controllably varying system parameters.
With a few notable exceptions[6, 7], these issues make
it difficult to capture the physics of such systems with
simple models. Accordingly, there is a growing effort un-
derway to realize condensed matter simulators using cold
atom systems[8, 9] which are understood from first prin-
ciples. The exquisite control afforded by cold atom exper-
iments permits adiabatic tuning of such systems through
quantum phase transitions[9, 10], enabling investigations
of criticality[11, 12] and scaling[13]. Time-resolved local
readout[14–16] and manipulation[17] provide direct ac-
cess to local dynamics and correlations. With this pow-
erful toolbox in hand, considerable attention has turned
to understanding magnetic phase transitions using cold
atom quantum simulations.

Initial experimental efforts to observe quantum mag-
netism have focused on bulk itinerant systems of
ultracold fermions[18] and small, highly connected
spin-networks simulated with ion chains[19]. Polar
molecules[20] and Rydberg atoms[21] have been the
subject of preliminary investigations both experimen-
tally and theoretically[22–24] as alternatives to ground-
state atoms with stronger, longer-range interactions.
There has also been initial success in detecting ordered
states which are artificially prepared through patterned
loading[18, 25–27] and double-well[28] experiments.

In this work, we simulate a 1D chain of interact-
ing Ising spins by mapping doublon-hole excitations
of a Mott insulator[10, 29, 30] of spinless bosons in
a tilted 1D optical lattice[31] onto a pseudo-spin de-
gree of freedom. This is in contrast to the commonly
considered approach in which the magnetic spins are
represented by two internal states of the atoms, and
nearest-neighbor spin-spin interactions result from super-
exchange couplings[32]. Super-exchange interactions in
cold atoms are quite weak, though they have been suc-
cessfully observed in double well systems[33]. The ap-
proach presented here has the benefit of a dynamical
timescale set by the tunneling rate t, rather than the
super-exchange interaction t2/U , where U is the onsite
interaction energy. Combining the faster dynamics with
the high spatial resolution afforded by a quantum gas
microscope[14], we are able to directly observe transitions
between paramagnetic and antiferromagnetic phases as
spin-spin interactions compete with applied fields.

One of the primary concerns in studying transitions
to magnetic states in cold atomic gases is the appar-
ent difficulty of reaching the requisite temperatures[34].
These spin temperatures are at the edge of experimental
reach[35, 36], and further cooling of lattice-spins remains
an active field of research[37]. However, ultracold gases
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FIG. 1. Spin model and its phase diagram. a. An
antiferromagnetic 1D Ising chain in longitudinal (hz) and
transverse (hx) magnetic fields exhibits two phases at zero
temperature[39, 40]. For weak applied fields the interactions
between the spins drive the system to form an antiferromag-
net. For strong applied fields the spins align to the field and
produce a paramagnet. These two phases are separated by a
second order phase transition (red line), except at the multi-
critical point (hz, hx) = (1, 0), where the lack of a transverse
field makes the transition classical and first order. The re-
gion that can be accessed in our experiment, in the vicinity of
(hz, hx) = (1, 0), is highlighted in blue. b. In this neighbor-
hood the Hamiltonian may be decomposed into a constraint
term that prevents adjacent spin-flips (red highlight), and
fields that drive the phase transition (blue highlight).

in optical lattices are effectively isolated from their envi-
ronment, and as such it is entropy and not temperature
which is constant as system parameters are tuned. Spin-
polarized Mott insulators have been demonstrated with
defect densities approaching the percent level[15, 16], cor-
responding to configurational entropy far below the spin
entropy required for magnetic ordering (see SI). This al-
lows us to use such a Mott insulator to initialize a mag-
netic system with low spin entropy. We engineer a mag-
netic Hamiltonian whose paramagnetic ground state pos-
sesses good overlap with the initial Mott state, and sub-
sequently tune it through a quantum phase transition[38]
to produce an antiferromagnetic state. The difficulty of
cooling lattice spins is thus replaced with the necessity of
performing sufficiently slow adiabatic ramps to minimize
diabatic crossings of manybody energy gaps.

Ising Interactions in a Tilted Optical Lattice

The quantum Ising model is a paradigmatic model of
magnetism, and an Ising chain is one of the simplest
many-body systems to exhibit a quantum phase transi-
tion. The Hamiltonian describing a 1D antiferromagnetic
Ising chain in the presence of an applied magnetic field
is given by:

H = J
∑
i

(
SizS

i+1
z − hzSiz − hxSix

)
Here Siz (Six) is the z (x) spin-projection operator at site
i, and hz (hx) is the z (x)-component of the magnetic
field applied to site i. The zero temperature phase di-
agram of the model[39, 40] is shown in Fig. 1a, for a
homogeneous applied field (hz, hx). For small applied
fields, the magnetic interactions induce staggered order-
ing of the spins, producing an antiferromagnet (AF). For
large applied fields, the field overwhelms the interactions,
and all spins align to the field, producing a paramagnet
(PM).

Our approach to constructing a magnetic Hamiltonian
was proposed by Sachdev et al.[31], in the context of
experiments by Greiner et al.[10], where a gradient was
applied to measure the insulating properties of the Mott
state. Sachdev et al. showed that under the influence of
such field gradients, the dynamics of a 1D Mott insulator
map onto the aforementioned Ising model (see Methods)
in the neighborhood of (hz, hx) = (1, 0) (Fig. 1b).

In the Mott insulator regime (U � t) it is energet-
ically forbidden for the atoms to tunnel as long as the
tilt per lattice site, E, differs from the onsite atom-atom
interaction U . Hence, the system remains in a state with
one atom per lattice site for E < U (Fig. 2a). As the
tilt approaches the interaction strength (E = U), each
atom is free to tunnel onto its neighbor, so long as its
neighbor has not itself tunneled (Fig. 2b). This nearest-
neighbor constraint is the source of the effective spin-spin
interaction. If the tilt E is increased sufficiently slowly
through the transition so as to keep the system near the
many-body ground state, density wave ordering results
(Fig. 2c).

The mapping onto a spin-1/2 model arises as each
atom has only two possible positions: an atom that has
not tunneled corresponds to an “up” spin, and an atom
that has tunneled corresponds to a “down” spin. Fig. 2d
shows the spin configurations that correspond to vari-
ous atom distributions in the optical lattice. The tran-
sition from a uniform phase at small tilt to a density
wave phase at large tilt then corresponds to a transi-
tion from a paramagnetic phase to an antiferromagnetic
phase in the spin model. The longitudinal field hz thus
arises from the lattice tilt, and the transverse field hx
from tunneling. As derived in the Methods, the map-
ping between Bose-Hubbard and spin models is given by
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FIG. 2. Tilted Hubbard model and mapping to spin model. a. Middle row: When a Mott insulator is placed in a tilted
lattice, it remains in a state with one atom per lattice site until the tilt per site E reaches the onsite interaction energy U . b.
At this point the energy cost ∆ = E − U to move to the neighboring site vanishes, and the atoms begin to tunnel resonantly
to reduce their energy. An atom, however, can only tunnel to a neighboring site if the atom on that site has not itself tunneled
away. If no atom is present on the neighboring site, the tunneling process is suppressed by the energy gap U . This creates a
strong constraint and leads to the formation of entangled states. c. As the tilt is increased further, the system transitions into
a doubly degenerate staggered phase. d. This system may be mapped onto a model of interacting spin-1/2 particles, where the
two spin states correspond to the two possible positions of each atom. In the spin model, the aforementioned constraint forbids
adjacent down spins, realizing a spin-spin interaction. The initial Mott insulator now corresponds to a paramagnetic phase
with all spins aligned upwards to a large magnetic field (see top row), the state at resonant tilt corresponds to a non-trivial
(critical) spin configuration, and staggered ordering at even larger tilt corresponds to an anti-ferromagnetic phase. Bottom
row: The phases can be detected by single lattice site imaging. Because the imaging system is sensitive only to the parity of
the atom number, paramagnetic domains appear bright a., and anti-ferromagnetic domains appear dark c.

(hz, hx) = (1−∆̃, 23/2t̃), t̃ = t/J , ∆̃ = ∆/J = (E−U)/J ,
with t the single-particle tunneling rate, and J ∼ U the
constraint term.

Spatially varying tilts in the optical lattice can give rise
to site-to-site variation of hz. Such inhomogeneity would
impact the critical behaviour by breaking the transla-
tional symmetry, inducing different sites to transition at
different applied tilts. Accordingly, the resulting many-
body energy gaps, dynamical timescales[41, 42], and en-
tropy of entanglement[43] would differ from the homo-
geneous case. Controlling such inhomogeneities is thus
crucial for studies of magnetism.

The mapping of the Hubbard model onto the spin-
model breaks down away from (hz, hx) ∼ (1, 0). This
is because states with three atoms on a lattice site are
not within the Hilbert space that maps to the spin
model. As such we can study ground state dynamics
and low-energy excitations of the equivalent Ising model,
but not high-energy excitations associated with adjacent
flipped spins. These constraints admit investigation of
the Ising physics only in the neighborhood of the multi-
critical point (hz, hx) ∼ (1, 0). This regime is of partic-
ular theoretical interest as the model is here not exactly
solvable[39]. It is nonetheless in the Ising universality
class[31], and so a study of its critical physics would pro-
vide insight into the behaviours of the more commonly
considered transverse (hz = 0) Ising model.

Extracting Spin Observables

We locally detect magnetic ordering by utilizing our
quantum gas microscope, capable of resolving individ-
ual lattice sites. The microscope is sensitive only to the
parity of the site occupation number[14], and so PM do-
mains (with one atom per lattice site) should appear as
entirely bright regions, and AF domains (with alternat-
ing 0-2-0-2 occupation) as entirely dark regions. In the
spin language, the detection parity operator P i measures
the spin-spin correlation between adjacent spins:

P i = 4Si−1
z Siz

Throughout this article we will characterize our spin-
ordering primarily via the probability that site i has odd
occupation piodd = 1

2 (1 + 〈P i〉). Taking the spin con-
straint into account, the chain average of piodd is equiva-
lent to a chain-averaged measurement of 〈Siz〉, the mean

z-projection of the spin: 〈Siz〉 = 1
2p
i
odd . Here an-

gle brackets denote realization-averages and bars denote
chain-averages.

This parity measurement allows us to locally identify
magnetic domains and estimate their size. This, how-
ever, is not a direct measurement of the AF order pa-
rameter described in Ref. [31], and does not reflect the
broken symmetry in the AF phase (see Methods). Ac-
cordingly, we also study the AF order parameter more
directly through 1D quantum noise interferometry[44].
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Observing the Phase Transition

Our experiments begin with a Mott insulator of 87Rb
atoms in a two dimensional optical lattice with spacing
a = 680 nm and a depth of 35Er, in the focal plane of
a high resolution imaging system which allows detection
of single atoms on individual lattice sites as described
in previous work[14, 15]. The lattice recoil energy is
given by Er = h2/8ma2, where h is Planck’s constant
and m the mass of 87Rb. We generate our effective hz by
tilting the lattice potential by E per lattice-site, which
is achieved via a magnetic field gradient along the x-
direction (defined in Fig. 3a). This gradient is applied in
two stepsfirst a fast ramp (in 8 ms) to just below the tran-
sition point[31, 39] at E = U+1.85t (hz = 1−0.66hx), fol-
lowed by a slow linear ramp (in 250 ms) across the tran-
sition. Before starting the slow gradient ramp, the lattice
depth along the y-direction is increased (in 2 ms) typi-
cally to 45(7)Er, while the depth along the x-direction
is reduced to 14(1)Er. This decouples the system into
1D chains with significant tunneling only along their
lengths. Simultaneously, we compensate the tilt inhomo-
geneity arising from harmonic confinement, leaving only
residual inhomogeneity arising from our lattice projec-
tion method[14]. We then probe the system by stopping
the ramp at various points and observing spin ordering,
first of the entire cloud, and then specializing to the tran-
sitions of individual lattice sites in a particular chain.

We initiate the gradient ramp on the paramagnetic side
of the phase transition (typically at E/U = 0.7), as the
initial Mott state has good overlap with the paramag-
netic ground state (Fig. 3ai). At the end of the ramp
(E/U = 1.2), we observe an even occupation with prob-
ability 0.90(2) (Fig. 3aii), as expected for an AF phase
in the magnetic model where the spin-spin interaction
overwhelms the effective field hz. In between, density-
wave (AF) ordered regions begin to form, as shown in
Fig. 3aiii. Fig. 3c shows podd at various times during this
ramp. A crucial characteristic of an adiabatic transition
is that it is reversible. Fig. 3b shows podd during a ramp
from a PM to an AF and back. The recovery of the singly
occupied sites is evidence of the reversibility of the pro-
cess, and hence that the state at the end of the forward
ramp is in fact an antiferromagnet.

We directly verify the existence of staggered order-
ing in the AF phase via a 1D quantum noise correlation
measurement[44]. We perform this measurement by in-
creasing the lattice depth along the chains to 35Er within
5 ms and then rapidly switching off that lattice to real-
ize a 1D expansion. The resulting spatial autocorrelation
is plotted in Fig. 3d at both the beginning (i) and end
(ii) of the ramp from the PM phase to the AF phase. In
the PM phase the spectrum exhibits peaks at momentum
difference p = h/a, characteristic of a Mott insulator[45].
In the AF phase peaks at p = h/2a appear, indicative
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FIG. 3. Probing the paramagnet to antiferromagnet
phase transition. a. Representative single-shot images as
the tilt is swept adiabatically through the phase transition in
250 ms. The upper image (i) is near-perfect n = 1 (bright)
and n = 2 (center dark) Mott insulator shells in PM phase.
The lower image (ii) is the “inverted” shell structure charac-
teristic of the staggered ordering of the AF phase after a tilt
along the x-direction. The inversion occurs because chains
of sites in a shell with N atoms per site are converted into
a staggered phase wherein sites alternate between N − 1 and
N + 1 atoms, and so a shell with even occupation becomes
a region of odd occupation, and vice-versa. The remaining
pictures (iii) are several chains (within the red rectangles in i
and ii) of the N = 1 shell at various points during the sweep,
t = 0, 50, 100, 150, 175 and 250 ms, showing AF domain for-
mation. b. To demonstrate the reversibility of the transition,
we adiabatically ramp from the PM phase into the AF phase
and back in 500 ms. The probability that a site in the N = 1
shell has odd occupation at various points during the ramp is
observed to drop, and subsequently revive, as expected when
the system leaves and then returns to the PM phase. c. A
closer look at the PM to AF quantum phase transition within
an N = 1 shell, showing podd vs. tilt. Errorbars reflect 1σ
statistical errors in the region-averaged mean podd. The blue
curve is a guide for the eye. d. Noise correlation measure-
ment after 8 ms time of flight expansion along the chains. (i)
In the PM phase, peaks at momentum h/a correspond to a
periodicity of one lattice site before expansion, characteris-
tic of a Mott insulator[45]. (ii) In the AF phase, additional
peaks at momentum h/2a indicate the existence of staggered
ordering, with a periodicity of two lattice sites.
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of the emergence of a spatial ordering with twice the
wavelength. In principle the mean domain size can be
extracted from the p = h/2a peak width, however our
measurement is broadened by both finite expansion time
and aberration arising from the fact that the 1D expan-
sion is performed not in free space but in slightly corru-
gated confining tubes.

Single-Site Study of the Transition

A high resolution study reveals that in the presence of
harmonic confinement the spins undergo the transition
sequentially due to the resulting spatial variation of the
effective longitudinal field. Fig. 4a shows podd vs. tilt for
two different rows of a harmonically confined Mott in-
sulator, separated by seven lattice sites. These two rows
tune through resonance at different tilts, as can be under-
stood from the energy level diagram Fig. 4b. To realize
a homogeneous field Ising model we eliminate the har-
monic confinement (see Methods) immediately before the
slow ramp into the AF phase. The homogeneity is now
only limited by residual lattice beam disorder, and ac-
cordingly, Fig. 4c demonstrates that different rows tran-
sition almost simultaneously, as anticipated theoretically
(Fig. 4d).

After compensating the harmonic confinement, we use
high resolution imaging to study the transition on the
single-site level. This allows us to focus on a single six-
site chain with particularly low inhomogeneity, which we
will study for the remainder of this article. We identify
such a chain by imaging individual lattice sites as the sys-
tem is tuned across the PM-AF transition. Fig. 5 shows
the average occupation of each of the six adjacent sites
(black curves), versus tilt, for a 250 ms ramp across the
transition. The r.m.s. variation in the fitted centers is
6 Hz, significantly less than their mean 10%–90% width
of 105(30) Hz, corresponding to the effective transverse
field 23/2t = 28 Hz. By quickly jumping across the tran-
sition with tunneling inhibited, and then ramping slowly
across the transition in reverse with tunneling allowed
(red curves, taken under slightly different conditions), we
are able to rule out large, localized potential steps that
would otherwise prevent individual spins from flipping.
The curves in Fig. 5 provide our best estimate of the in-
homogeneity. However, exact determination of the site-
to-site disorder using this technique is complicated by
the many-body nature of the observed transition. New
spectroscopic techniques such as single-site modulation
spectroscopy would need to be developed to ensure that
the inhomogeneities are small enough to study criticality
in long, homogeneous Ising chains.
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FIG. 4. Impact of harmonic confinement. For a ramp
(see Fig. 3b) across the transition (in 250 ms) and back, a.
harmonic confinement broadens the transition, inducing rows
of the cloud seven lattice sites apart to undergo the tran-
sition at different applied tilts. b. Corresponding energy
spectrum of a 1D Ising chain in a longitudinal field gradi-
ent of 0.01 per lattice site, reflecting seven spins and open
boundary conditions. Each avoided crossing of the lowest en-
ergy state corresponds to a single spin-flip with energy gap
hx = 0.001. c. Once the confinement has been properly com-
pensated, the average transition curves from the two rows
overlap. Not apparent from these averaged curves is a small
amount of residual tilt inhomogeneity. d. Energy spectrum
for a homogeneous 1D Ising chain of six spins, with periodic
boundary conditions. In contrast to b., the single avoided
crossing drives all spin-flips simultaneously, with a gap that
decreases with increasing system size, as expected for the crit-
ical slowdown near a quantum phase transition. All errorbars
are 1σ statistical uncertainties derived from the mean of podd
averaged over a region.

Domain Formation in a 1D Ising Chain

Quantum fluctuations induce the formation of AF do-
mains as the homogeneous chain is ramped through the
transition. As discussed previously, these domains will
appear as uninterrupted strings of dark lattice sites.
Fig. 6a shows the observed mean length-weighted dark
domain length extracted from 43 single-shot images per
tilt, as the system is ramped from the PM phase into the
AF phase. The dark domain length is here defined as the
number of contiguous dark sites (see SI). On the AF side
of the transition, the mean dark domain length grows to
4.9(2) sites, giving evidence that the average AF domain
size approaches the system size.

We next investigate the impact of ramp rate on the
transition from the PM phase into the AF phase in the
homogeneous chain. The blue points in Fig. 6b show
podd as a function of ramp speed across the transition,
which may be understood qualitatively as the fraction of
the system that has not transitioned into AF domains of
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FIG. 5. Site-resolved transition in near-homogeneous
Ising model. The probability of odd occupation of six indi-
vidual lattice sites forming a contiguous 1D chain, versus the
tilt, shown for both forward (black) and reverse (red) ramps.
The spins transition at the same applied field to within the
curve width, set by quantum fluctuations. A typical 1σ statis-
tical errorbar is shown. The single-site widths are consistent
with a longitudinal lattice depth of 14(1)Er, in agreement
with a Kapitza-Dirac measurement of 15(2)Er. A large local
potential step at a particular lattice would be reflected as a
shift in either the forward or reverse podd curve at that site.
The reverse curve demonstrates our ability to adiabatically
prepare the highest energy state of the restricted spin Hamil-
tonian: the system exhibits PM ordering on the AF side of the
transition, and AF ordering on the PM side of the transition.

any size. The time required to flip the spins is ∼ 50 ms,
consistent with tunneling induced quantum fluctuations
driving the transition. The black points in Fig. 6b are the
mean length-weighted dark domain length as a function
of ramp rate. As above, the mean dark domain length
saturates at 4.8(2), near the system size of six sites. The
remaining defects likely result from imperfect overlap of
the initial MI with the PM state at finite ∆̃, as well as
defects of the initial MI and heating during the ramp.

While the antiferromagnetic domain formation dis-
cussed thus far occurs in spin-chains that remain in a
quantum state near the many-body ground state, we can
also produce antiferromagnetic domains that correspond
to the highest energy state of the constrained Hilbert
space. This is achieved by starting with the Mott in-
sulator and rapidly ramping the field gradient through
the transition point with tunneling inhibited, then adia-
batically ramping back with tunneling permitted. This
prepares a PM on the AF side of the transition, and adi-
abatically converts it into an AF on the PM side. The
resulting data are shown in red, in Fig. 5 and Fig. 6a,
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FIG. 6. Dynamics of antiferromagnetic domain for-
mation. Within a single six-site chain with low disorder,
a. shows the mean dark-domain length as a function of the
tilt in units of U , for both forward (black) and reverse (red)
ramps. As the system enters the AF phase the mean dark
domain length grows until it approaches the chain length.
Domain formation in the reverse ramp, beginning on the AF
side of the transition, demonstrates the adiabatic generation
of AF domains on the PM side of the transition, correspond-
ing to the highest energy state of the spin Hamiltonian (in-
set). Within the same chain, b. shows podd (blue) and dark
domain length (black) versus the duration Tramp of the ramp
from E/U = 0.7 to E/U = 1.2. The top axis shows the scaled
inverse sweep rate α = 8π2t2/(∆E/Tramp), where ∆E is the
sweep range in Hz, and t is the tunneling rate, in Hz, along the
chain. The characteristic timescale for domain formation is
α ≈ 2, or Tramp ≈ 50 ms, indicating that tunneling along the
chain is the source of the quantum fluctuations that drive do-
main formation. Errorbars for the dark chain lengths are 1σ
statistical uncertainties, arising from the number of detected
domains of each length. Those for podd are the 1σ statistical
uncertainty in the mean of the six-site chain.

demonstrating that these high energy states are suffi-
ciently long-lived to support domain formation. Similar
ideas have been proposed for preparation of difficult-to-
access many-body states using the highest energy states
of Hamiltonians with easily prepared ground states[46].
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Conclusions and Outlook

We have experimentally realized a quantum simula-
tion of an Ising chain in the presence of longitudinal
and transverse fields. By varying the applied longitu-
dinal field, we drive a transition between PM and AF
phases, and verify the formation of spin domains via both
direct in situ imaging, and noise-correlation in expan-
sion. We study the adiabaticity requirements for transi-
tion dynamics, and observe a timescale consistent with
tunneling-induced quantum fluctuations. By rapidly tun-
ing through the transition and ramping back across it
slowly, we prepare the highest energy state of a many-
body spin Hamiltonian.

We introduce and implement a novel route to study-
ing low entropy magnetism in optical lattices. Com-
plexities associated with cooling of spin mixtures[35–37]
are circumvented by employing a low entropy, gapped
Mott insulator as an initially spin-polarized state, and
then adiabatically opening a spin degree of freedom[38].
This recipe is directly applicable to more traditional ap-
proaches to quantum magnetism, including those em-
ploying super-exchange interactions[32].

The spin-mapping demonstrated here opens a new av-
enue for future work on quantum magnetism and control.
Strong effective magnetic interactions make possible the
creation of states with coherently generated long-range
order. Combined with a lower-disorder lattice, in-depth
studies of criticality become possible. Tilting by the
band excitation energy will enable studies of the trans-
verse Ising model[47]. It will be interesting to investi-
gate the impact of various types of controlled disorder
on criticality and transition dynamics, as well as the pos-
sible existence of non-thermalizing states[48]. A partic-
ularly intriguing direction is the extension of the tilted
Mott insulator physics to higher dimensions. The sim-
ple square lattice geometry will provide access to phases
with longitudinal density wave ordering and transverse
superfluidity[31]. More sophisticated geometries will pro-
duce frustrated systems with novel quantum liquid and
dimer covered ground states[49].
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Lukin, S. Pielawa, and S. Sachdev for stimulating discus-
sions. This work was supported by grants from the Army
Research Office with funding from the DARPA OLE pro-
gram, an AFOSR MURI program, and by grants from the
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Büchler, Nature Physics 6, 382 (2010).

[25] P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley,
W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 99,
020402 (2007).
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and B. V. Svistunov, (2009), phys. Rev. A 81, 053622
(2010), arXiv:cond-mat/0912.1865.

[35] D. M. Weld, P. Medley, H. Miyake, D. Hucul, D. E.
Pritchard, and W. Ketterle, Phys. Rev. Lett. 103,
245301 (2009).

[36] P. Medley, D. M. Weld, H. Miyake, D. E. Pritchard, and
W. Ketterle, (2010), arXiv:cond-mat/1006.4674.

[37] D. McKay and B. DeMarco, (2010), arXiv:cond-
mat/1010.0198.

[38] J. J. Garćıa-Ripoll, M. A. Martin-Delgado, and J. I.
Cirac, Phys. Rev. Lett. 93, 250405 (2004).

[39] A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and
V. O. Cheranovskii, Phys. Rev. B 68, 214406 (2003).

[40] M. Novotny and D. Landau, Journal of Magnetism and
Magnetic Materials 54-57, 685 (1986).

[41] Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[42] J. Dziarmaga, Phys. Rev. B 74, 064416 (2006).
[43] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys.

Rev. Lett. 90, 227902 (2003).
[44] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A

70, 013603 (2004).
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Methods

Mapping onto the Spin Model

We follow Sachdev et al. in formally mapping a 1D
Mott insulator of spinless bosons in a tilted lattice onto
a chain of interacting dipoles (doublon-hole pairs, in a
singly occupied Mott shell), and then onto a chain of spin-

1/2 particles with AF Ising interactions in longitudinal
and transverse fields. In a homogeneously tilted lattice,
the 1D Bose-Hubbard Hamiltonian reads:

H = −t
∑
j

(
a†jaj+1 + aja

†
j+1

)
+
U

2

∑
j

nj (nj − 1)− E
∑
j

j · nj

Here t is the nearest-neighbor tunneling rate, U is the
onsite interaction, E is the tilt per lattice site, a†j (aj) is
the creation (annihilation) operator for a particle on site

j, and nj = a†jaj is the occupation number operator on
site j.

For a tilt near E = U , the onsite interaction energy
cost for an atom to tunnel onto its neighbor is almost
precisely cancelled by the tilt energy. If one starts in a
Mott insulator with M atoms per site, an atom can then
resonantly tunnel onto the neighboring site to produce
a dipole excitation with a pair of sites with M + 1 and
M − 1 atoms. The resonance condition is only met if
adjacent sites contain equal numbers of atoms, so only
one dipole can be created per link and neighboring links
cannot both support dipoles. We define a (properly nor-

malized) dipole creation operator d†j =
aja

†
j+1√

M(M+1)
.

The Bose-Hubbard Hamiltonian above can hence be
mapped onto the dipole Hamiltonian:

H = −
√
M(M + 1)t

∑
j

(
d†j + dj

)
+ (U − E)

∑
j

d†jdj

subject to the constraints d†jdj ≤ 1, d†j+1dj+1d
†
jdj = 0.

The factor of
√
M(M + 1) arises due to bosonic en-

hancement.
To map from the dipole Hamiltonian to the spin-1/2

Hamiltonian, we define a link without (with) a dipole
excitation to be an up (down) spin along ẑ. Then the
creation/annihilation of dipoles are related to the flipping
of spins, and we can write:

Sjz =
1

2
− d†jdj , S

j
x =

1

2

(
d†j + dj

)
, andSjy =

i

2

(
d†j − dj

)
The constraint forbidding adjacent dipoles can be

implemented by introducing a positive energy term
Jd†j+1dj+1d

†
jdj to the Hamiltonian, where J is of order

U . This term gives rise to nearest-neighbor interactions
and an effective longitudinal field for the spins.

Defining ∆ = E−U the Hamiltonian for the spins now
reads:

H = J
∑
j

SjzS
j+1
z − 2

√
M(M + 1)t

∑
j

Sjx

− (J −∆)
∑
j

Sjz

= J
∑
j

(
SjzS

j+1
z − hxSjx − hzSjz

)
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The dimensionless fields are defined as hx = 23/2t/J =
23/2t̃, hz =

(
1− ∆

J

)
= 1 − ∆̃, with M set to one as in

our experiment.

Experimental Details

Our experiments start with a single layer 2D Mott in-
sulator of 87Rb atoms in a 35Er lattice with 680 nm
spacing as described in previous work. The atoms are
in the |F = 1,mf = −1〉 state and the initial fidelity of
the Mott insulator is 0.95(2), with local fidelities as high
as 0.98. A magnetic field gradient along the x-direction
is ramped up within 8 ms to tilt the lattice potential
by 0.7U per lattice site. At this point, the depth of the
lattice along the chains is ramped down to 14Er, while
the potential transverse to the chains is ramped up to
45Er, within 2 ms. At the same time, the optical po-
tential providing harmonic confinement is ramped down.
Tunneling between chains is negligible over the exper-
imental timescale (see Supplementary notes for further
discussion). The gradient is then ramped adiabatically
through the transition point using a linear ramp that
ends at a tilt of 1.2U per lattice site, typically within 250
ms.

We can then perform either an in situ measurement or
a 1D expansion of the chains to achieve noise correlation
interferometry. In both cases, we use fluorescence imag-
ing after pinning the atoms in a deep lattice to obtain the
density distribution with single atom/single lattice-site
resolution. Images far on the Mott side of the transition
are used to select chains of atoms within the first shell of
the insulator. The phase transition is then studied only
within these chains, with quantitative curves employing
data only from the single chain with lowest disorder.

For noise correlation measurements, the magnetic field
gradient and the lattice along the chain are switched off,
while the interchain lattice and the potential confining
the atoms in the third direction remain on. After a 1D
expansion for 8 ms, the atoms are pinned for imaging.
To extract information about density wave ordering in
the chains, several hundred images (250 for paramag-
netic, 500 for antiferromagnetic phase) each containing
15 chains, are fitted to extract the atom positions, and
then spatially autocorrelated and averaged as described
in Ref. [26].

Lattice depths are calibrated to 15% using Kapitza-
Dirac scattering, however the width of single-site tran-
sition regions was found to be a more sensitive probe
of the longitudinal tunneling rate and hence the longi-
tudinal lattice depth (see Supplementary Fig. S7), and
accordingly was employed throughout this article.

The magnetic field gradient is calibrated using lattice
modulation spectroscopy. In the presence of a poten-
tial gradient E per lattice site, modulation of the lattice
depth along the chains causes resonant excitation at two

0.8 0.9 1.0 1.1
0.0

0.2

0.4

0.6

0.8

1.0

 

 

p od
d

E / U

FIG. S7. Single-site transition curve. The occupation
probability podd of a characteristic single site, plotted versus
tilt as the system is ramped from the PM phase into the AF
phase. The theory curve reflects a zero temperature exact di-
agonalization calculation of the ground state of a chain of six
Ising spins (the shape of the podd curve is insensitive to chain
length, see Supplementary Fig. S9), with periodic boundary
conditions. The curve has been offset and rescaled vertically
to account for defects arising from both the initial MI, and
heating during the ramp. The theory allows us to extract a
lattice depth of 14(1)Er. We attribute the residual fluctu-
ations around the expected curve to residual oscillations re-
flecting non-adiabaticity arising from that fact that the ramp
was initiated too close to the transition. The error bars are
1σ statistical uncertainties.

frequencies, U +E and U −E corresponding to an atom
in the Mott insulator moving up or down gradient. We
detect these excitations as a reduction in the value of podd

using in-situ imaging (see Supplementary Fig. S8). Using
the mean of the two resonances, we obtain the interac-
tion energy U = 430(20) Hz at 16Er longitudinal lattice,
45Er transverse lattice (corresponding to U = 413(19) Hz
at 14Er longitudinal lattice, where the experiment oper-
ates, which agrees with a band-structure calculation of
401(25) Hz). The separation between the resonances as
a function of applied gradient is used to calibrate E. At
zero applied magnetic field gradient, we find the stray
gradients to be less than 0.02U .

Local and Long-range Observables

In-situ detection gives the atom number modulo 2 due
to light assisted collisions of atoms on each lattice site
during imaging. By averaging the occupation of a site
over multiple images, we obtain the probability of an
odd occupation on the jth lattice site (pjodd), which cor-
responds to the probability of having a single atom on
a site within the subspace of our model. This is re-
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FIG. S8. Modulation spectroscopy in a tilted lattice.
The occupation probability averaged over the six-site near-
homogeneous region described in the main text, plotted ver-
sus the modulation frequency, for 16Er longitudinal lattice
modulated by ±23%, corresponding to a Bose-enhanced reso-
nant tunneling rate[50] of 2π× 4 Hz. Because the experiment
is performed in a lattice tilted by E per site, the peak at zero
tilt which appears at the interaction energy U is split out into
two peaks, one corresponding to an atom tunneling up the tilt
at an energy cost of U + E, and one to tunneling down the
tilt a cost of U − E. Fitting these peaks allows us to extract
both U , and E. The peak width arises from a combination
of power broadening (approximately 2π× 14 Hz, complicated
by Rabi flopping), and the residual lattice disorder discussed
in the main text.

lated to the spin observables in the effective model by

〈Sj−1
z Sjz〉 = 1

2

(
pjodd −

1
2

)
. We average over all the atoms

in the chain to obtain podd = pjodd, which in combination
with the constraint that neighboring down spins are not
allowed permits us to relate the chain averaged mean z-

projection of spin to podd according to: 〈Sjz〉 = podd

2 . This
quantity varies across the transition and depends only
weakly on the chain length. On the other hand, the order

parameter for the transition O =

〈(
1
N

∑
j(−1)jSjz

)2〉
depends on the chain length (Supplementary Fig. S9) and
is non-analytic across the transition for a thermodynamic
system. The amplitude of the noise correlation signal at
separation d for a chain consisting of a large number of

atoms is C(d) = 1 + 1
N2

∣∣∣∣∑j e
−imadj

h̄t nj

∣∣∣∣2 where N is the

number of lattice sites, j is the lattice site index, a is
the lattice spacing, m is the mass of the atom, t is the
expansion time, nj is the occupation of the jth site. It
can be shown that the correlation signal at d = πh̄t

ma is

related to the order parameter O = C
(
πh̄t
ma

)
− 1.

S
z

hz

FIG. S9. Comparing Sz to the order parameter. An ex-
act diagonalization calculation (for hx = 0.004) of the ground
state of a 1D chain of four (black) and eight (red) Ising spins
with nearest-neighbor interactions, revealing that Sz (solid)
is not sensitive to atom number, while the order parameter
(dash-dotted) is. It is anticipated that the order parame-
ter will exhibit a cusp in the large-system limit, though the
exponential scaling with atom number precludes simulating
substantially larger systems on a classical computer.

Supplementary Information

Supplementary Discussion of Dark Domain Length
Analysis

The magnetic interactions should produce even-length
domains of dark sites, corresponding to AF spin domains.
To quantify the length of these AF domains we study
the length of the measurable dark domains, defining a
“dark domain” as a contiguous string of dark sites that
is bounded either by a site with an atom or an edge
of the region of interest. We then calculate the mean
length-weighted dark chain length from this data.

Defects in the initial Mott insulator (MI) reduce the
effective system size. Their appearance can produce an
overestimate of the dark chain length by either connect-
ing two dark chains, or appearing on the end of a dark
chain. The initial MI defect probability is typically 4%
per site over an entire N = 1 shell, after correcting for
losses during imaging.

Losses and higher order tunneling processes during the
ramp can have similar consequences for the observed dark
domain length, and can also suppress the observed dark
domain length by perturbing atoms near the end of the
ramp once the AF has already formed. The rate of such
processes can be estimated from the MI 1/e squeezing
lifetime in the tilted lattice, measured to be 3.3 seconds.
To perform this measurement we first ramp to a tilt of
300 Hz/lattice site and tune the lattice depths to 45Er
and 14Er for transverse and longitudinal lattices, respec-
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tively. We then hold for a variable time, and measure the
observed in situ atom number. The lifetime is dominated
by higher-order tunneling processes. Parametric heating
and inelastic scattering become the dominant loss chan-
nel in deeper lattices once tunneling is inhibited.

A worst-case estimate for the impact of missing atoms
can be reached from the fraction of the time that the
system is missing no atoms at the end of the ramp. The
six-site chain analyzed in the main text is initially fully
occupied 79% of the time. During the time it takes the
dark-domain length to grow to 4 lattice sites (60 ms), the
aforementioned effects only reduce this number to 73%.

Supplementary Discussion of Entropy and
Thermalization

Supplementary Table 1 shows the entropy per parti-
cle (S/NkB) for several different Mott insulator fideli-
ties (podd), assuming a chemical potential µ = U/2, as
well as the mean length-weighted AF domain size D in
an infinite 1D magnetic system with the same entropy
per particle. Here D = 2(2 − ε)/ε, where the spin-
dislocation probability in the AF ε is defined by S/NkB ≈
(ε/2) [1 + log(1/ε)]. Spin defects are ignored as they are
both dynamically and thermodynamically unlikely. The
entropy per particle can be related to the Mott insulator

fidelity by[51]: S/NkB = log
[

2
1−podd

]
−podd log

[
2podd

1−podd

]
.

If such thermalization took place in our finite length
chain of six sites (with initial fidelity 97.5%), the mean
domain size would be limited by the system size to 5.3
sites.

Experimentally, we find most Mott defects to be un-
bound doublons and holes, which do not directly map
to excitations in the spin model. The large energy
gap present in our tilted lattice, combined with con-
servation of particle number, make it difficult for these
Mott defects to thermalize with spin degrees of free-
dom. Such thermalization would require, for example,
migration of a doublon to a hole, or decay via a very
high order process[34] into several spin defects- quite un-
likely within the experimental timescale. Consequently,
these nearly static defects act as fixed boundary con-
ditions that limit the effective length of the simulated
spin chains. Supplementary Table one also provides
the expected uninterrupted chain length, computed as
Lsys = (1 + podd)/(1− podd).

Supplementary Discussion of Higher Order Effects

Interchain Tunneling

Tunneling between chains is excluded from the spin-
mapping described in the main text, though under cer-
tain conditions it produces exotic transverse superfluid-
ity, as described in Ref. [31]. For our purposes, these tun-
neling processes serve only to take the system out of the
Hilbert space described by the spin model. Most of our
experiments were performed at a transverse lattice depth
of 45Er, corresponding to an interchain tunneling rate of
ttransverse = 2π×0.07 Hz. This tunneling rate is basically
negligible on our experiment timescale of 250 ms. The
noise correlation data, as well as the shell pictures and
reversibility curve in Fig. 2 of the main text, were taken
at 35Er transverse lattice depth. At this depth the trans-
verse tunneling rate is ttransverse = 2π × 0.27 Hz, which
is small compared to our lattice inhomogeneities, and so
results in highly-suppressed, off-resonant Rabi-flopping.
In practice, increasing the transverse lattice from 35Er
to 45Er results in a modest ∼ 5% improvement in the
quality of the Mott insulator after transitioning to the
antiferromagnetic state and back.

Second Order Tunneling

In addition to nearest-neighbor tunneling which cre-
ates doublon-hole pairs, and proceeds at a rate

√
2t when

the tilt E = U , there remain second-order tunneling pro-

cesses which create triplons at a rate tS.O. ∼
√

3t2

U . For
our longitudinal lattice depth of 14Er, and interaction
energy U = 2π × 416 Hz, we find tS.O. ∼ 2π × 0.4 Hz.

Because our system is continuously tilted, all such
transitions will be tuned through resonance. For our

typical experiment, Rramp ≈
1
2U

250 ms ≈ 2π × 840 Hz2, so
the Landau-Zener adiabatic transition probability to the

triplon state Ptriplon = 1 − exp
[
−2π × t2S.O.

Rramp

]
∼ 1%.

In future experiments with slower ramps, both this ef-
fect and the closely related second-order Stark-shift will
become more of a concern. These can be further sup-
pressed relative to the desired dynamics by increasing
the longitudinal lattice depth, at the expense of slower
many-body dynamics. It bears mentioning that for our
experimental parameters the triplon state should experi-
ence an additional energy shift calculated to be 22 Hz,
due to multi-orbital interactions[52, 53]

Impact of physics beyond the Hubbard Model

For a 14Er lattice, the next-nearest neighbor tunnel-
ing rate is suppressed relative to that of the nearest
neighbor[30] by a factor of ∼ 300, making the total
rate tNextNeighbor = 2π × 0.04 Hz, which is negligible on
present experiment timescales. The longitudinal nearest-
neighbor interaction shift for one atom per lattice site is
∼ 10−3 Hz, and interaction driven tunneling[28] occurs
with a rate of 2π × 0.3 Hz.
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Mott Fidelity podd Entropy per Particle (S/NkB)
Length-Weighted Mean AF
Domain Size (Thermalized)

Length-Weighted Mean Un-
interrupted Chain Length
(Unthermalized)

0.95 0.23 22 39
0.975 0.13 52 79
0.99 0.063 144 199

TABLE I. For various Mott insulator fidelities, the corresponding configurational entropy per particle is computed. These
entropies are comparable to, or well below, the critical entropy for quantum magnetism[34] S/NkB ∼ 0.25 − 0.5. If the spin
degrees of freedom thermalize efficiently with the Mott degrees of freedom, the spin entropy will then be equal to the Mott
entropy. The corresponding mean AF domain size is then computed for each Mott entropy. In the absence of thermalization,
the Mott defects break the spin chain into disconnected subsystems, whose mean size is computed in the fourth column, and
is comparable to the mean chain length in the presence of thermalization.
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