489 research outputs found
Adaptive Evolutionary Clustering
In many practical applications of clustering, the objects to be clustered
evolve over time, and a clustering result is desired at each time step. In such
applications, evolutionary clustering typically outperforms traditional static
clustering by producing clustering results that reflect long-term trends while
being robust to short-term variations. Several evolutionary clustering
algorithms have recently been proposed, often by adding a temporal smoothness
penalty to the cost function of a static clustering method. In this paper, we
introduce a different approach to evolutionary clustering by accurately
tracking the time-varying proximities between objects followed by static
clustering. We present an evolutionary clustering framework that adaptively
estimates the optimal smoothing parameter using shrinkage estimation, a
statistical approach that improves a naive estimate using additional
information. The proposed framework can be used to extend a variety of static
clustering algorithms, including hierarchical, k-means, and spectral
clustering, into evolutionary clustering algorithms. Experiments on synthetic
and real data sets indicate that the proposed framework outperforms static
clustering and existing evolutionary clustering algorithms in many scenarios.Comment: To appear in Data Mining and Knowledge Discovery, MATLAB toolbox
available at http://tbayes.eecs.umich.edu/xukevin/affec
Consensus clustering in complex networks
The community structure of complex networks reveals both their organization
and hidden relationships among their constituents. Most community detection
methods currently available are not deterministic, and their results typically
depend on the specific random seeds, initial conditions and tie-break rules
adopted for their execution. Consensus clustering is used in data analysis to
generate stable results out of a set of partitions delivered by stochastic
methods. Here we show that consensus clustering can be combined with any
existing method in a self-consistent way, enhancing considerably both the
stability and the accuracy of the resulting partitions. This framework is also
particularly suitable to monitor the evolution of community structure in
temporal networks. An application of consensus clustering to a large citation
network of physics papers demonstrates its capability to keep track of the
birth, death and diversification of topics.Comment: 11 pages, 12 figures. Published in Scientific Report
Graph Metrics for Temporal Networks
Temporal networks, i.e., networks in which the interactions among a set of
elementary units change over time, can be modelled in terms of time-varying
graphs, which are time-ordered sequences of graphs over a set of nodes. In such
graphs, the concepts of node adjacency and reachability crucially depend on the
exact temporal ordering of the links. Consequently, all the concepts and
metrics proposed and used for the characterisation of static complex networks
have to be redefined or appropriately extended to time-varying graphs, in order
to take into account the effects of time ordering on causality. In this chapter
we discuss how to represent temporal networks and we review the definitions of
walks, paths, connectedness and connected components valid for graphs in which
the links fluctuate over time. We then focus on temporal node-node distance,
and we discuss how to characterise link persistence and the temporal
small-world behaviour in this class of networks. Finally, we discuss the
extension of classic centrality measures, including closeness, betweenness and
spectral centrality, to the case of time-varying graphs, and we review the work
on temporal motifs analysis and the definition of modularity for temporal
graphs.Comment: 26 pages, 5 figures, Chapter in Temporal Networks (Petter Holme and
Jari Saram\"aki editors). Springer. Berlin, Heidelberg 201
A Regularized Graph Layout Framework for Dynamic Network Visualization
Many real-world networks, including social and information networks, are
dynamic structures that evolve over time. Such dynamic networks are typically
visualized using a sequence of static graph layouts. In addition to providing a
visual representation of the network structure at each time step, the sequence
should preserve the mental map between layouts of consecutive time steps to
allow a human to interpret the temporal evolution of the network. In this
paper, we propose a framework for dynamic network visualization in the on-line
setting where only present and past graph snapshots are available to create the
present layout. The proposed framework creates regularized graph layouts by
augmenting the cost function of a static graph layout algorithm with a grouping
penalty, which discourages nodes from deviating too far from other nodes
belonging to the same group, and a temporal penalty, which discourages large
node movements between consecutive time steps. The penalties increase the
stability of the layout sequence, thus preserving the mental map. We introduce
two dynamic layout algorithms within the proposed framework, namely dynamic
multidimensional scaling (DMDS) and dynamic graph Laplacian layout (DGLL). We
apply these algorithms on several data sets to illustrate the importance of
both grouping and temporal regularization for producing interpretable
visualizations of dynamic networks.Comment: To appear in Data Mining and Knowledge Discovery, supporting material
(animations and MATLAB toolbox) available at
http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_201
Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models
Across the sciences, the statistical analysis of networks is central to the
production of knowledge on relational phenomena. Because of their ability to
model the structural generation of networks, exponential random graph models
are a ubiquitous means of analysis. However, they are limited by an inability
to model networks with valued edges. We solve this problem by introducing a
class of generalized exponential random graph models capable of modeling
networks whose edges are valued, thus greatly expanding the scope of networks
applied researchers can subject to statistical analysis
Community evolution in patent networks: technological change and network dynamics
When studying patent data as a way to understand innovation and technological change, the conventional indicators might fall short, and categorizing technologies based on the existing classification systems used by patent authorities could cause inaccuracy and misclassification, as shown in literature. Gao et al. (International Workshop on Complex Networks and their Applications, 2017) have established a method to analyze patent classes of similar technologies as network communities. In this paper, we adopt the stabilized Louvain method for network community detection to improve consistency and stability. Incorporating the overlapping community mapping algorithm, we also develop a new method to identify the central nodes based on the temporal evolution of the network structure and track the changes of communities over time. A case study of Germany’s patent data is used to demonstrate and verify the application of the method and the results. Compared to the non-network metrics and conventional network measures, we offer a heuristic approach with a dynamic view and more stable results
Community evolution in patent networks: technological change and network dynamics
When studying patent data as a way to understand innovation and technological change, the conventional indicators might fall short, and categorizing technologies based on the existing classification systems used by patent authorities could cause inaccuracy and misclassification, as shown in literature. Gao et al. (International Workshop on Complex Networks and their Applications, 2017) have established a method to analyze patent classes of similar technologies as network communities. In this paper, we adopt the stabilized Louvain method for network community detection to improve consistency and stability. Incorporating the overlapping community mapping algorithm, we also develop a new method to identify the central nodes based on the temporal evolution of the network structure and track the changes of communities over time. A case study of Germany’s patent data is used to demonstrate and verify the application of the method and the results. Compared to the non-network metrics and conventional network measures, we offer a heuristic approach with a dynamic view and more stable results
Light smoking at base-line predicts a higher mortality risk to women than to men; evidence from a cohort with long follow-up
BACKGROUND: There is conflicting evidence as to whether smoking is more harmful to women than to men. The UK Cotton Workers’ Cohort was recruited in the 1960s and contained a high proportion of men and women smokers who were well matched in terms of age, job and length of time in job. The cohort has been followed up for 42 years. METHODS: Mortality in the cohort was analysed using an individual relative survival method and Cox regression. Whether smoking, ascertained at baseline in the 1960s, was more hazardous to women than to men was examined by estimating the relative risk ratio women to men, smokers to never smoked, for light (1–14), medium (15–24), heavy (25+ cigarettes per day) and former smoking. RESULTS: For all-cause mortality relative risk ratios were 1.35 for light smoking at baseline (95% CI 1.07-1.70), 1.15 for medium smoking (95% CI 0.89-1.49) and 1.00 for heavy smoking (95% CI 0.63-1.61). Relative risk ratios for light smoking at baseline for circulatory system disease was 1.42 (95% CI 1.01 to 1.98) and for respiratory disease was 1.89 (95% CI 0.99 to 3.63). Heights of participants provided no explanation for the gender difference. CONCLUSIONS: Light smoking at baseline was shown to be significantly more hazardous to women than to men but the effect decreased as consumption increased indicating a dose response relationship. Heavy smoking was equally hazardous to both genders. This result may help explain the conflicting evidence seen elsewhere. However gender differences in smoking cessation may provide an alternative explanation
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
- …
