2,660 research outputs found

    Tackling the Tibetan Plateau in a down suit: Insights into thermoregulation by bar-headed geese during migration

    Get PDF
    This is the final version. Available from Company of Biologists via the DOI in this recordData accessibility: Following the manuscript being accepted data will be uploaded to a public repository such as Dryad.Birds migrating through extreme environments can experience a range of challenges while matching the demands of flight, including highly variable ambient temperatures, humidity and oxygen levels. However, there has been limited research into avian thermoregulation during migration in extreme environments. This study aimed to investigate the effect of flight performance and high-altitude on body temperature (Tb) of free flying bar-headed geese (Anser indicus), a species that completes a high-altitude trans-Himalayan migration through very cold, hypoxic environments. We measured abdominal Tb, along with altitude (via changes in barometric pressure), heart rate and body acceleration of bar-headed geese during their migration across the Tibetan Plateau. Bar-headed geese vary the circadian rhythm of Tb in response to migration, with peak daily Tb during daytime hours outside of migration but early in the morning or overnight during migration, reflecting changes in body acceleration. However, during flights changes in Tb were not consistent with changes in flight performance (as measured by heart rate or rate of ascent) or altitude. Overall, our results suggest that bar-headed geese are able to thermoregulate during high-altitude migration, maintaining Tb within a relatively narrow range despite appreciable variation in flight intensity and environmental conditions.Biotechnology and Biological Sciences Research Council (BBSRC)Natural Sciences and Engineering Research Council of Canada (NSERC)Max Planck Institute for OrnithologyUS Geological SurveyWestern Ecological and Patuxent Wildlife Research Centers, Avian Influenza Programm

    Genetic variation for tuber mineral concentrations in accessions of the Commonwealth Potato Collection

    Get PDF
    The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse conditions. Selected CPC accessions, representing the eco-geographical distribution of wild potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers from five plants of each accession were harvested, bulked and their mineral composition analysed. Among the germplasm investigated, there was a greater range in tuber concentrations of some elements of nutritional significance to both plants and animals, such as (Ca, Fe and Zn; 6.7, 3.6, and 4.5-fold respectively) than others, such as (K, P and S; all <3-fold). Significant positive correlations were found between mean altitude of the species' range and tuber P, K, Cu and Mg concentrations. The amount of diversity observed in the CPC collection indicates the existence of wide differences in tuber mineral accumulation among different potato accessions. This might be useful in breeding for nutritional improvement of potato tubers

    Do Bar-Headed Geese Train for High Altitude Flights?

    Get PDF
    This is the author accepted manuscript. The final version is available from OUP via the DOI in this recordSYNOPSIS: Exercise at high altitude is extremely challenging, largely due to hypobaric hypoxia (low oxygen levels brought about by low air pressure). In humans, the maximal rate of oxygen consumption decreases with increasing altitude, supporting progressively poorer performance. Bar-headed geese (Anser indicus) are renowned high altitude migrants and, although they appear to minimize altitude during migration where possible, they must fly over the Tibetan Plateau (mean altitude 4800 m) for much of their annual migration. This requires considerable cardiovascular effort, but no study has assessed the extent to which bar-headed geese may train prior to migration for long distances, or for high altitudes. Using implanted loggers that recorded heart rate, acceleration, pressure, and temperature, we found no evidence of training for migration in bar-headed geese. Geese showed no significant change in summed activity per day or maximal activity per day. There was also no significant change in maximum heart rate per day or minimum resting heart rate, which may be evidence of an increase in cardiac stroke volume if all other variables were to remain the same. We discuss the strategies used by bar-headed geese in the context of training undertaken by human mountaineers when preparing for high altitude, noting the differences between their respective cardiovascular physiology.This work was supported by the UK Biotechnology and Biological Sciences Research Council [BBSRC; BB/FO15615/1 to C.M.B. and P.J.B.]. Authors were supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) award [W.K.M.], and the FAO through the Animal Health Service EMPRES surveillance program

    Modelling informative time points: an evolutionary process approach

    Get PDF
    Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.- The authors acknowledge Foundation FCT (FundacAo para a Ciencia e Tecnologia) as members of the research project PTDC/MAT-STA/28243/2017 and Center for Research & Development in Mathematics and Applications of Aveiro University within project UID/MAT/04106/2019

    Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2

    Get PDF
    The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data

    Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP

    Get PDF
    The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb

    Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression

    Get PDF
    Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription

    General practitioners’ perceptions of compassionate communities: a qualitative study

    Get PDF
    Abstract: Background: General Practitioners (GPs) face challenges when providing palliative care, including an ageing, multimorbid population, and falling GP numbers. A ‘public health palliative care’ approach, defined as “working with communities to improve people’s experience of death, dying and bereavement”, is gaining momentum. ‘Compassionate communities’ is one example, with a focus on linking professional health carers with supportive community networks. Primary care is central to the approach, which has been incorporated into United Kingdom GP palliative care guidance. No research to date, however, has investigated GP perspectives of these approaches. Our aim, therefore, was to explore GP perceptions of a public health approach to palliative care, and compassionate communities. Methods: GPs working in the United Kingdom were recruited through university teaching and research networks using snowball sampling. Purposive sampling ensured wide representation of gender, level of experience and practice populations. Semi-structured, digitally audio-recorded interviews were conducted with nine GPs. Interviews were transcribed verbatim, and thematic analysis was undertaken, informed by a qualitative descriptive methodology. Interviews continued until data saturation was reached. Results: Most participants were unfamiliar with the term ‘compassionate communities’, but recognised examples within their practice. Three major themes with seven subthemes were identified: 1) Perceived potential of compassionate communities, including: ‘maximising use of existing community services’; ‘influencing health outside of healthcare’; and ‘combatting taboo’, 2) Perceived challenges of compassionate communities, including: ‘patient safety’; ‘limited capacity of the community’; ‘limited capacity of general practice’, and ‘applicability of public health to palliative care’, and 3) The role of the GP in compassionate communities. Conclusions: GPs recognised the importance of the wider community in caring for palliative care patients, however most were unfamiliar with the compassionate community approach. Participants held differing views regarding the application of the model, and the position of general practice within this. Further research into the approach’s practical implementation, and exploring the views of other key stakeholders, would help establish the feasibility of compassionate communities in practice, and guide its future application

    Global warming and arctic terns: Estimating climate change impacts on the world's longest migration

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Tracking data: The tracking data that were collected and support the findings of this study are available in the Seabird Tracking Database at 2356146398 https://data.seabirdtracking.org/dataset, reference number 1905. Additional tracking data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.d6080nt and available upon request at https://data.seabirdtracking.org/dataset/739. Environmental variables: The data that support the findings of this study are openly available in JASMIN at https://jasmin.ac.uk/. All CMIP6 model output is freely available on the Earth System Grid Federation (https://esgf.llnl.gov/). Global ocean biogeochemistry hindcast simulations are available on the Copernicus Marine Database (https://resources.marine.copernicus.eu/).Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: ‘middle-of-the-road’ and ‘fossil-fuelled development’ scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a ‘fossil-fuelled development’ scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s−1) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.Natural Environment Research Council (NERC)German Federal Ministry of Education and Research (BMBF)University of BristolScience and Technology Facilities Council (STFC)National Geographi
    corecore