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Abstract Real time series sometimes exhibit various types of �irregularities�:
missing observations, observations collected not regularly over time for prac-
tical reasons, observation times driven by the series itself, or outlying obser-
vations. However, the vast majority of methods of time series analysis are
designed for regular time series only. A particular case of irregularly spaced
time series is that in which the sampling procedure over time depends also on
the observed values. In such situations, there is stochastic dependence between
the process being modeled and the times of the observations.

In this work we propose a model in which the sampling design depends
on all past history of the observed processes. Taking into account the natural
temporal order underlying available data represented by a time series, then a
modelling approach based on evolutionary processes seems a natural choice.
We consider maximum likelihood estimation of the model parameters. Numer-
ical studies with simulated and real data sets are performed to illustrate the
bene�ts of this model based approach.

Keywords Evolutionary Processes; Informative Time Points; Continuous
Time Autoregressive Process.

Mathematics Subject Classi�cation (2010) 62M10

1 Introduction

Analysis of experimental data that have been observed at di�erent points in
time leads to speci�c problems in statistical modelling and inference. In tradi-
tional time series the main emphasis is on the case when a continuous variable
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is measured at discrete equispaced time points and there is an extensive body
of literature on analysing equally spaced time series data, see for example Box
et al. (2015) and Brockwell and Davis (2002). Nevertheless, unevenly spaced
(also called unequally or irregularly spaced) time series data naturally occur
in many scienti�c domains. For example, data related to natural disasters such
as earthquakes, �oods, or volcanic eruptions which typically occur at irregular
time intervals, give rise to irregularly or unevenly spaced time series. A partic-
ular situation of irregularly spaced data is that in which the sampling design
depends also, for practical constraints, on the observed values. Examples oc-
cur in �sheries where the data are observed when the resource is available, in
sensoring when sensors keep only some records in order to save memory and
in clinical studies, when a worse clinical condition leads to more frequent ob-
servations of the patient. In all such situations, there is stochastic dependence
between the process under study and the times at which the observations are
made, and the observation times are informative on the underlying process.
Ignoring this dependence can lead to biased estimates and misleading infer-
ences.

In this context, Monteiro et al. (2018) introduce the concept of Preferen-
tial Sampling in the temporal dimension and propose a model-based approach
to make inference and prediction. The suggested framework considers the ob-
served time points as the realization of a time point process stochastically
dependent on an underlying latent process (e.g. an individual health indica-
tor, when subjected to regular monitoring).

Monteiro et al. (2018) assumed that the variable of interest is sampled
in time according to a sampling design that depends on the values of the
underlying process, ignoring the past of the observation processes. However,
this kind of assumption of a memoryless process for the observations process
having an evolution without aftere�ects is sometimes unrealistic and useless
in real contexts, where the dependence on the past is crucial.

In this work we consider that the sampling design may depend on entire
past history of the process, meaning all the times of the observations as well as
the values of these observations. In these situations, the observed time points
can be considered informative to the process being studied. Within the scope
of longitudinal studies, the importance of joint modelling informative times
and data was already recognised by Ryu et al. (2007) and Liang et al. (2009),
who proposed joint modelling and analysis of longitudinal data with possibly
informative observation times via latent variables. In these studies the follow-
up time process is considered dependent on the longitudinal outcome process
and it should not be regarded deterministic in the design of the study. The
analogous problem in the context of longitudinal clinical trial data has been
studied too in the context of issues concerning missing values and dropouts,
in the sense that a missing observation conveys partial information about the
value that would have been observed. See, for example, Diggle and Kenward
(1994), Hogan and Laird (1997) and Daniels and Hogan (2008).

Our framework considers joint models for data indexed by informative ob-
servation times, assuming a continuous time underlying process observed at
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irregular and stochastic points. To represent the underlying process we opt for
a continuous time series model such as the Continuous Time Autoregressive
(CAR) model, which is mathematically and computationally tractable and
yet su�ciently �exible to represent a wide range of phenomena. The assump-
tion that the observation times are informative and stochastic is equivalent to
assuming that they are a realisation of a random process, which is stochasti-
cally dependent on the underlying process. This dependence is speci�ed via
a model-based approach that relies on point processes, namely marked evolu-
tionary processes.

Point processes provide a very useful theoretical tool to represent the evo-
lution of some random value, or system, over time. In such processes it is
assumed that what happens now may depend on the past, but not on the
future. This identi�es a natural ordering for temporal point processes. Our
interest is to consider a point process that speci�es a stochastic model for the
time of the next event given we know all the times of previous events. Such
processes are termed evolutionary point processes.

The paper is organized as follows. In Section 2 we provide some theoretical
background on evolutionary point processes. In Section 3 we consider that
the sampling design may depend on all past history of the process and we
propose a model, based on evolutionary processes that takes into account that
the times and values of the observations contain important information for
the underlying process (informative and stochastic time points). We proceed
with likelihood inference to estimate the parameters of this model and we
consider a numerical method based on a Laplace approach to optimize the
likelihood. In Section 4, using numerical studies, we document the performance
of this approach comparing the results of main parameter estimates with those
obtained from the traditional approach for irregularly spaced data. In Section
5 we show the application of the previously described methodology to a real
data set related to monitoring the level of a biomedical marker, after a cancer
patient undergoes a bone marrow transplant. Section 6 is devoted to make
some concluding remarks.

2 Background on evolutionary processes

We start by reviewing some concepts on evolutionary point processes (Daley
and Vere-Jones (2003)). To set the notation let (Tn)n∈N denote an increasing
sequence of positive random times. An important concept in evolutionary pro-
cesses is the history of the process, denoted by Ht which represents the entire
history of the point process (Tn) prior to time t, meaning that Ht speci�es the

times of all point events in the interval (−∞, t). We refer to H̃t as the observed
history of the process over the interval [0, t), that is the history consistent with
an observation on the process.

In this work, the point processe is assumed to be simple point processes,
meaning that no points coincide and therefore the points can be ordered
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strictly in time. Furthermore, the speci�cation of the point process conditional
on its history is via the conditional intensity function.

The conditional intensity can be written directly in terms of the hazard
functions since hazard function has a natural interpretation as the conditional
instantaneous event rate. Following Daley and Vere-Jones (2003), given a se-
quence ti with 0 < t1 < · · · < tn < · · · the hazard functions are de�ned
by

λ∗(t) =

{
h1(t), 0 < t ≤ t1
hn(t|t1, · · · , tn−1), tn−1 < t ≤ tn, n ≥ 2

The intuitive content of the notion of a conditional intensity function is
well expressed through the suggestive relation

λ∗(t)dt = E
[
N(dt)|H̃t

]
where dt is an in�nitesimal interval around t,N(·) denotes the number of points
falling in an interval and H̃t is the σ-algebra of events occurring at times up
to but not including t. Thus, the conditional intensity can be interpreted as
the conditional risk of the occurrence of an event at t, given the realization of
the process over the interval [0, t).

2.1 Conditional intensity function

The conditional intensity function of the point process (Tn), λ
∗(t) = λ(t|H̃t),

is de�ned by

λ∗(t) =
fT (t|H̃t)

1− FT (t|H̃t)
, t1 < · · · < tn−1 < t < tn < · · · (1)

where fT (t|H̃t) is the conditional density and FT (t|H̃t) is the corresponding
cumulative distribution function.

Intuitively, the conditional intensity at t gives the conditional �risk� of a
point event occurring at that instant in time, given the observed history of the
process prior to time t.

Examples of point processes in which the conditional intensity has a par-
ticular functional form are the following:

� The (inhomogeneous) Poisson process. In this process the number of points
in disjoint sets is independent and the conditional intensity function in-
herets this property. The Poisson process is quite simply the point process
in which the conditional intensity function is independent of the past, i.e.
the conditional intensity function is equal to the intensity function of the
Poisson process, λ∗(t) = λ(t).
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� The conditional intensity function of a Hawkes process, Hawkes (1971),
with an exponential decay function has the form

λ∗(t) = η + ψ
∑

i:ti∈(0,t)

exp(−γ(t− ti))

where η > 0, ψ ≥ 0, γ > 0 and ψ < γ for the process to be stationary. Note
that each time a new point arrives in this process, the conditional intensity
grows by ψ and then decreases exponentially back towards η. In other
words, a point increases the chance of getting other points immediately
after (self-exciting). Setting ψ = 0, return us to the homogeneous Poisson
process.

2.2 Marked point processes

In addition to the times of the point events, there may be additional variables
that are of interest associated with each point event. This information is known
as marks and the mark space (M) can be of many di�erent types, but it is often
(a subset of) R or N. The marks may have an independent interest or may be
included to make a more realistic model of the event times. For example, in
the analysis of a particular medical indicator, it is relevant to know its value
and not only when it was observed. In addition, the value of the indicator
in�uences how often measurements are taken.

More formally, a marked point process, with point event times in R and
marks in M , is a point process {(Tn, Yn)n∈N} on R ×M with the additional
property that the process associated with times t1, t2, · · · , the ground pro-
cess, is itself a point process on R. We specify a marked point process by
de�ning the conditional intensity λ(·|H̃t) of the ground process, and then,
for a given point event and observed history at time t, we de�ne the condi-
tional distribution function for the marks. The later may be represented as
f∗Y (y|t) = fY (y|t, H̃t,y), specifying the density of the mark Y given t and the
history of the process that now includes information of times and marks of
past events. This means that the de�nitions of the complete and observed his-
tories, Ht,y, and H̃t,y, and the conditional intensity function were extended for
marked point processes. We can now de�ne the conditional intensity function
for the marked case as

λ∗(t, y) = λ∗(t)f∗Y (y|t) (2)

λ∗(t) is called the ground intensity and is de�ned exactly as the conditional
intensity function for the unmarked case, except that it is allowed to depend
on the marks of the past events. In addition, the marks are assumed to be
conditionally independent given the history of the marked point process and
unanticipated. A process is said to have unanticipated marks if the distribution
of the mark at ti is independent of all previous point event times and marks.

Thus, we can rewrite (2) as
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λ∗(t, y) =
fT,Y (t, y|H̃t,y)

1− FT (t|H̃t)

where fT,Y (t, y|H̃t,y) is the joint density of the time and the mark, condi-

tional on past times and marks, and FT (t|H̃t,y) is the conditional cumulative
distribution function of T also conditional on the past times and marks.

A marked point process (T,Y) = {(T1, Y1), (T2, Y2) · · · } is strongly sta-
tionary if all the shifted marked point processes {(T1 − s, Y1), (T2 − s, Y2), · · · }
have the same distribution with s ∈ R.

An example of a marked point process is the marked Hawkes process. This
process is a generalization of the unmarked Hawkes process, such that each
point event time now has a mark associated with it. The conditional intensity
of the ground process is given by

λ(t|H̃t) = λ∗(t) = η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti)) (3)

where η, γ > 0, ψ, β1 ≥ 0 and yi denotes the observed value at time ti.
Equivalently we could de�ne it by its conditional intensity function includ-

ing both marks and times

λ∗(t, y) =

η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti))

 f∗(y|t) (4)

The idea behind using this model is that every new event increases the
intensity by ψ exp(β1yi) and large events increase the intensity more than
small.

2.3 Inference

Daley and Vere-Jones (2003) note that for point processes described as hav-
ing an evolutionary character, their conditional intensities and likelihoods are
relatively simple. The evolutionary character of such point processes allows
the likelihood to be found by successively conditioning on the past. Explicitly,
the likelihood of a realization ((t1, y1), · · · , (tn, yn)) on [0, T )×R, of a marked
point process is given by

LE =

(
n∏
i=1

λ∗(ti)

)
exp

(
−
∫ T

0

λ∗(u)du

)(
n∏
i=1

f∗Y (yi|ti)

)
(5)

See (Daley and Vere-Jones, 2003, p.246-256) for a development of the
likelihood. The third factor on the right-hand side of (5) is the contribution
to the likelihood from the observed marks.

The use of the corresponding log-likelihood implies bearing in mind some
practical considerations. A point process is only observed for a �nite interval



Modelling informative time points: an evolutionary process approach 7

[0, T ] and time 0 is some time after the origin of the process. For evolutionary
point processes, there may be e�ects from point events occurring before time 0.
Daley and Vere-Jones (2003) referred such e�ects as edge or boundary e�ects.
An approach often taken in the literature is ignoring the e�ects from point
events occurring before the start of the observation period. In this case the
conditional intensity can be regarded as approximate for some initial part of
the observation period, and as such, there is likely to be some e�ect on the
estimated model. Rasmussen (2013) highlights that the estimate of η is likely
to be too high, however, he noted that the e�ects on the estimated model will
be negligible if the data set being used is large.

3 An evolutionary model for informative time points

Consider an unobserved stochastic process in time S(t), represented by a
CAR(1) that satis�es the di�erential equation

dS(t) + α0S(t)dt = dW (t)

where, α0 is the autoregressive coe�cient and W (t) is a Wiener process with
variance parameter σ2

w. S(·) is a stationary Gaussian process if α0 > 0, with
E[S(t)] = 0. Now admit that S(t) is observed at times ti, i = 1, · · · , n, yielding
a data set (ti, yi), where the corresponding Yi = Y (ti) is the noisy version
of S(ti), Y (ti) = µ + S(ti) + N(0, τ2). Since our goal is to infer on S(t),
admitting that the sampling times are stochastic and the sampling design
may depend on all past history of the process (both the actual times and
values of the observations) then a model able to deal with this evolutionary
character must specify the joint distribution of S, T = (t1, . . . , tn) and Y =
(Y1, . . . , Yn), [S, T, Y ]. Considering that [S, T, Y ] = [S][T, Y |S] let {(T, Y )|S}
be an evolutionary marked point process1 with ground intensity similar to (3)

λ∗S (t) = λ(t|H̃t, S) = η + ψ
∑

ti:ti∈(0,t)

exp(β1yi) exp(−γ(t− ti)) (6)

with η, γ > 0, ψ < γ and ψ, β1 ≥ 0.

Admitting the conditional mark density, f∗S(y|t) = f∗(y|t, S), then accord-
ing to (2), the conditional intensity function including both marks and times
is

λ∗S(t, y) = λ(t, y|H̃t, S) = λ∗S(t)f
∗
S(y|t) (7)

The main purposes behind this model are

� every new event increases the intensity by ψ exp(β1yi) and large events
increase the intensity more than small events;

1 This point process is stationary under the conditions given by Proposition 6.4. VII. from
Daley and Vere-Jones (2003)
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� observations that are more distant in time have less in�uence, considering
on γ parameter;

� the initial value of the conditional intensity equals η and we ignore e�ects
from events occurring before the �rst observation.

This model, henceforth EVOL, allows to take into account the history of
the process, capture the evolutionary character of the process and deal with
irregularly spaced time series.

3.1 Maximum likelihood estimation

To obtain estimates for the parameters of the model we use maximum likeli-
hood estimation. For the shared latent process model, the likelihood function
for data T and Y can be expressed as

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS (8)

where θ =

(
µ, σ =

√
σ2
w

2α0
, φ = 1

α0
, τ, β1, γ, ψ, η

)
represents all the model pa-

rameters.

Considering that the likelihood of a marked point process is given by (5),
[T, Y |S] in (8) takes the form

[T, Y |S] =

(
n∏
i=1

λ∗S(ti)

)
exp

(
−
∫ T

0

λ∗S(u)du

)(
n∏
i=1

f∗S(yi|ti)

)
The associated log-likelihood function is given by

log([T, Y |S]) =
n∑
i=1

log λ∗S(ti)−
∫ T

0

λ∗S(u)du+

n∑
i=1

log f∗S(yi|ti) (9)

Substituting in (9), the conditional (ground) intensity, λ∗S(·), and the con-
ditional mark density f∗S(yi|ti), speci�ed as N(Si, τ

2), then the log-likelihood
can be rewritten as

log([T, Y |S]) =
n∑
i=1

log

η + ψ
∑

j:tj<ti∈(0,t)

exp(β1yj − γ(ti − tj))

 (10)

−ηT − ψ

γ

n∑
i=1

exp(β1yi)(1− exp(−γ(T − ti)))

−n
2
log(2πτ2)− 1

2τ2

n∑
i=1

(yi − Si)2
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3.2 Computational procedures

The calculation of the integral in (8) is perfomed in three steps. In a �rst
step, we need to calculate the log of the joint bivariate distribution of the
observations conditional on the underlying process S as given in expression
(10). To overcome the computational burden resulting from the nested sum in
the �rst term

n∑
i=1

log

η + ψ
∑

j:tj<ti∈(0,t)

exp(β1yj − γ(ti − tj))

 ,

we use a compiled C++ subroutine. Additionally, that we set λ(0|H̃0) = η and
ignore the e�ects from point events occurring before time 0.

In a second step we need to approximate [S], the distribution of the un-
observed underlying process. For this purpose we use a technique based on
stochastic partial di�erential equations (SPDE). Following Lindgren et al.
(2011), we represent a Gaussian process with Matérn covariance structure
as the solution of the following SPDE,(

φ−2 −∆
)α/2

(ωS(t)) = ε(t), t ∈ R+, (11)

where ε(t) is Gaussian white noise, ∆ is the Laplacian and φ is the range pa-
rameter of the Matérn covariance function γ(u) in its standard parametriza-
tion,

γ(u) =
σ2

Γ (ν)2ν−1
(u/φ)

ν
Kν (u/φ) : u ≥ 0

where Kν is the modi�ed Bessel function of second kind and order ν > 0 and
σ2 is the marginal variance. The integer value of ν determines the mean square
di�erentiability of the underlying process, which matters for predictions made
using such a model. However, ν is usually �xed since it is poorly identi�ed
in typically applications. The remaining parameters in (11) are α = ν + 1/2,
from this we can identify the exponential covariance with ν = 1/2, and ω that
controls the variance,

ω2 =
Γ (1/2)

Γ (1)(4π)1/2φ−1σ2
(12)

Finally, S is approximated by S̃, where

S̃(t) =

m∑
k=1

ψk(t)Wk, t ∈ R+

with ψk(·) being piecewise linear basis functions at a set of time knots and
W =W1, ...,Wm is a zero-mean multivariate Gaussian variate with covariance
matrix Q−1. The construction is done by projecting the SPDE onto the basis
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representation in what is essentially a Finite Element method. For α = 1 the
required form of Q is

Q = ω2(φ−2C +G2)

where C and G2 are sparse matrices whose explicit expressions can be found
in Lindgren et al. (2011).

In the last step, to compute the integral in the likelihood (8), we utilize au-
tomatic di�erentiation of a Laplace approximation to the marginal likelihood,
following Kristensen et al. (2016).

Note that the likelihood function for L(θ) can be written as

L(θ) =

∫
S

exp(−f(S,θ))dS (13)

where f(S,θ) denote the negative joint log-likelihood of the data, θ is the
vector of parameters (�xed e�ects) and S the random e�ects. Thus the Laplace
approximation for L(θ) is

L∗(θ) = (2π)N/2 det(H(θ))−1/2 exp(−f(Ŝ(θ),θ))

where

Ŝ(θ) = argSminf(S,θ) (14)

and H(θ) is the Hessian of f with respect to S evaluated at Ŝ(θ),

H(θ) =
∂2

∂S2
f(S,θ)|S=Ŝ(θ)

The estimate of θ minimizes the negative of the logarithm of the Laplace
approximation,

− logL∗(θ) = −N
2
log(2π) +

1

2
log det(H(θ)) + f(Ŝ(θ),θ) (15)

This objective function and its derivatives acquired by using automatic dif-
ferentiation, are required to apply standard nonlinear optimization algorithms
(e.g., nlmimb) to optimize the objective function and obtain the estimate for
θ.

Uncertainty of the estimate θ̂ or of any di�erentiable function of the esti-
mate ζ(θ̂) that the user speci�es, is obtained by the δ-method:

V ar(ζ(θ̂)) = −

{
∂ζ(θ)

∂θ′

[
∂2(logL∗(θ))

∂θ∂θ′

]−1
∂ζ(θ)

∂θ

}
θ=θ̂

(16)

These uncertainty calculations also require derivatives of (15). However,
derivatives are straight-forward to obtain using automatic di�erentiation in
this context.
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In particular, using the R package TMB, short for Template Model Builder,
(Kristensen et al., 2016), the user has to de�ne the joint log-likelihood of the
data and (i.e. conditional on) the random e�ects as a C++ template func-
tion. The other operations such as integration and calculation of the marginal
score function, are done directly in R language. The package evaluates and
maximizes the Laplace approximation of the marginal likelihood, where the
random e�ects are automatically integrated out. This approximation, and its
derivatives, are obtained using automatic di�erentiation (up to order three)
of the joint likelihood. In the case of sampling design that may depend on
entire past history of the process, we simply have to de�ne the joint negative
log-likelihood as

f(S,θ) = −log([S][T, Y |S])

and allow TMB package, (Kristensen et al., 2016), to integrate out the latent
�eld S to evaluate approximately (8).

4 Numerical studies

We now intend to proceed with the assessment of the EVOL model, compar-
ing the results of its parameter estimates and those of the traditional Kalman
�lter approach to irregularly spaced data (cts package (Wang, 2013)). We use
simulated time series, so we start by describing the procedure needed to sim-
ulate a marked point process.

4.1 Simulation Design

The classic method to simulate an inhomogeneous Poisson process is the thin-
ning method of Lewis and Shedler (1979). This method requires that the con-
ditional intensity to be bounded above, i.e. there is a �nite M such that for
all t, λ(t|H̃t, S) ≤ M . This method was generalised by Ogata (1981) and
this generalisation only requires that the intensity to be locally bounded. The
algorithm is described as follows. Suppose we can �nd a piecewise constant
process M(·|H̃t, S), conditional on the history of the point process, such that
for t ∈ [0, T ),

λ(t|H̃t, S) ≤M(·|H̃t, S)

Given that we can �nd a suitable M(·|H̃t, S), we can simulate a reali-
sation of the point process of interest in this way: de�ne an inhomogeneous
Poisson process N∗ which has a piecewise constant intensity M(·|H̃t, S) that

changes value according to the history H̃t and decide on the termination
condition, for e.g. the simulation interval is [0, T ), then simulate the points
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0 ≤ t∗1 < t∗2 < · · · < t∗N∗[0,T ) < T from the process N∗. Each t∗i is then selected

with probability λ(t∗i |H̃t∗i
, St∗i )/M(t∗i |H̃t∗i

, St∗i ) to form part of the simulated
realisation of the point process of interest, where the history Ht∗i

and St∗i give
the simulated history of the point process of interest up to time t∗i . For each
point ti that is selected to the simulated realisation of the point process of
interest we simulate a mark yi from Y (t) = µ+ S(t) +N(0, τ2).

In practice, the function M(·|H̃t, S) changes value each time a point event
is added to the simulated realisation of the process of interest, and so it will
not be known before carrying out the simulation.

To generate a time series under a preferential sampling design that depends
on all past history of the process, we adapt the R code used by (Lapham, 2014,
p.124-125).

As follows, we start to generate a realization of S, a CAR(1) process2 with

α0 = 0.2 and σ2
w = 1. These values correspond to V ar[S(·)] = σ2 =

σ2
w

2α0
=

(1.581)2 and φ = 1
α0

= 5, being the latter related to the lag beyond which
there is no correlation for practical purposes. The parameter values used to
generate the marked point process are

η = 0.05, ψ = 0.025, β1 = 0.6, γ = 0.1

and to generate the marks yi, we consider µ = 0 and τ = 0.1.
To illustrate the results of these sampling procedure, we represent in Figure

1 a realization of the process S (gray line) and the resulting data set.

0 100 200 300 400

-4
-2

0
2

4

time

ob
s

Fig. 1 Sample times with dependency on all past history of the process and underlying
process S (gray line).

2 We use package yuima, with S0 = 0 and a discretization of time domain in 1600 points
equally spaced.
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4.2 Estimation Results

For EVOL model, η and ψ parameters have a tuning role. Relatively to η, we
ignore e�ects from point events occurring before the start of the observation
period and we assume that the initial value of the conditional intensity equals
η. Regarding ψ, it controls the sum value in the ground intensity. Thus, in
a �rst simulation study the parameters µ, σ, φ, τ, β1 and γ are the target
of estimation and we set η and ψ values at the true ones. For the simulation
study we consider a total of 500 independent samples with at least 50 points
over the interval [0, 400]. The results of the mean and the standard errors for
each parameter, obtained from EVOL model, under (9), and from Kalman
�lter approach implemented via cts package (Wang, 2013), are summarized in
Table 1. In Figure 2 we have the corresponding boxplots, with true parameter
values marked as red line.

True EVOL CTS
µ 0 0.196 (0.267) 0.225 (0.304)
σ 1.581 1.567 (0.204) 1.606 (0.209)
φ 5 5.995 (1.647) 6.188 (1.617)
τ 0.1 0.456 (0.197) 0.483 (0.194)
β1 0.6 0.618 (0.128)
γ 0.1 0.095 (0.026)

Table 1 Maximum likelihood estimates, under EVOL approach and by Kalman �lter ap-
proach (CTS): with mean (standard errors) obtained from a total of 500 independent sam-
ples.

By analysing Table 1 and Figure 2, we conclude that EVOL model presents
more accurate estimates than Kalman �lter approach. The parameter τ seems
to be overestimated in both approaches. For β1 and γ the estimates are quite
reasonable and we believe that the inclusion of these two parameters in the
model is more realistic in real contexts.

Further studies with di�erent combinations of the parameters, namely for
β1 and γ were analysed. When β1 > γ the conclusions are similar, but when
β1 < γ or β1 > 1 it is necessary to do some calibration work with parameter
ψ in order to obtain samples with a reasonable dimension.

4.3 Sensitivity Analysis

We conduct a second simulation study aiming: to analyse the impact of also
estimating parameters η and ψ; and to investigate the sensitivity in parameter
estimation to initial values, needed by the iterative procedure supporting the
likelihood method.

Thus, we �rst consider as initial values (θ0) the �true� values. We then
consider: for µ, φ, σ and τ , the estimates obtained by the traditional Kalman
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Fig. 2 Boxplots for models parameters estimated over 500 independent samples with true
parameter values marked as red line, under EVOL and Kalman �lter (CTS) approaches.

�lter approach; and, for the other parameters, β1 = 0.4, γ = 0.2, η = 0.07 and
ψ = 0.035.

The results of the mean and standard errors for each parameter, obtained
from a total of 200 independent samples are summarized in Table 2.

The proposed method seems to be quite robust to initial values and the
inclusion of parameters η and ψ do not cause identi�ability issues, only pa-
rameter β1 is a little overestimated. In real data applications η and ψ are the
calibration parameters that need to be tunned, for example, iteratively during
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True EVOL (True θ0) EVOL (θ0 from Kalman �lter )
µ 0 0.239 (0.276) 0.239 (0.276)
σ 1.581 1.526 (0.224) 1.526 (0.224)
φ 5 5.720 (1.429) 5.720 (1.429)
τ 0.1 0.477 (0.202) 0.477 (0.202)
β1 0.6 0.782 (0.325) 0.782 (0.325)
γ 0.1 0.114 (0.065) 0.114 (0.065)
ψ 0.025 0.025 (0.023) 0.025 (0.023)
η 0.05 0.065 (0.021) 0.065 (0.021)

Table 2 MLE's, mean (standard errors) obtained from a total of 200 independent samples,
considering as initial values for EVOL approach the parameters estimated by traditional
Kalman �lter.

the estimation of the model. The �nal ML estimates of the model parameters
are then obtained for pre-de�ned values of η and ψ.

5 Application to real data

We now consider the problem of monitoring the level of two biomedical mark-
ers, platelet (PLT) and hematocrit (HTC), after a cancer patient undergoes
a bone marrow transplant. The data, composed by 54 measurements over 91
days of log(PLT) and log(HTC) shown in Figure 3, is studied by Shumway
and Sto�er (2017) as missing data problem. These data are made available in
package astsa Sto�er (2017) with the name of �blood�.

The biomedical marker PLT was also studied by Monteiro et al. (2018),
who present a model to deal with irregularly spaced time series in which the
sampling design only depends on the contemporaneous value of the underlying
process where, conditional on S, T is an inhomogeneous Poisson process with
intensity λ (t) = exp {a+ βS (t)} and conditional on S and T , Y is a set of
mutually independent Gaussian variates with τ2 being the measurement error
variance. We now intend to relate the results of the two models, both targeting
preferential sampling issues. We need to have in mind that the convergence of
the algorithm proposed by Monteiro et al. (2018) is very slow and the running
time becomes burdensome for longer time series and a large number of Monte
Carlo samples. Besides these, the large variability between likelihood values in
each Monte Carlo iteration makes the likelihood di�cult to optimize. So, we
here suggest an alternative method (henceforth LAP), detailed in Monteiro
et al. (2019), that uses automatic di�erentiation of a Laplace approximation
to the marginal likelihood, as described in Section 3.2, to approximate the
integral in the likelihood

L(θ) = [T, Y ] =

∫
S

[T, Y, S]dS =

∫
S

[S][T, Y |S]dS =

∫
S

[S][T |S][Y |T, S]dS

The approximation of the Gaussian process S through the SPDE technique
is also done as explained in Section 3.2.
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Fig. 3 Measurements of biomedical markers platelet and hematocrit, in the logarithm scale,
log(PLT) and log(HCT).

The proposed evolutionary model assumes that β1 ≥ 0, since we are con-
sidering the situation where sampled times are concentrated, predominantly,
near the maxima. As PLT observations are near the minima, we perform an
axial re�ection around the mean.

The estimated parameters, for log(PLT) biomedical marker, together with
estimated standard errors are summarized in Table 33. Comparing the parame-
ter estimates, we con�rm that for µ, φ, σ and τ the EVOL and LAP approaches
are in accordance.

Parameter β1 in (6) is not statistically signi�cant, however γ is signi�cant
reinforcing the fact that the distance to the previous observed times is relevant.

The estimated parameters, for log(HTC) marker, together with estimated
standard errors are summarized in Table 4. Parameters β1 and β are not sta-
tistical signi�cant. The lack of signi�cance for parameter φ is in accordance
with the low temporal correlation revealed by the initial analysis of the auto-
correlation function.

3 Recall ω is a reparametrization of σ, de�ned in equation (12).
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LAP model EVOL model
Parameter Estimate Standard Error Estimate Standard Error
µ 4.993 0.290 4.986 0.287
log(ω) 2.545 0.198 2.530 0.198
σ 0.329 0.329
log(φ) 3.559 0.710 3.529 0.708
φ 35.115 34.079
log(τ) - 2.086 0.132 -2.091 0.133
τ 0.124 0.124
β -0.936 0.316 �
β1 � 1.170 0.712
γ � 0.091 0.039
η � 0.002
ψ � 0.077

Table 3 Maximum likelihood estimates under LAP and EVOL for log(PLT).

LAP model EVOL model
Parameter Estimate Standard Error Estimate Standard Error
µ 3.428 0.019 3.429 0.019
log(ω) 2.372 0.150 2.378 0.147
σ 0.088 0.087
log(φ) 0.567 0.369 0.570 0.366
φ 1.763 1.768
log(τ) - 11.306 3991.8 -8.523 � 0
τ 0.00001 0.0002
β 0.491 1.923 �
β1 � 0.475 1.084
γ � 0.149 0.039
η � 0.002
ψ � 0.028

Table 4 Maximum likelihood estimates under LAP and EVOL for log(HTC).

Prediction

A practical question relevant in the monitoring of biomedical markers, or any
other such quantity, is to predict the time of the next observation of a pre-
de�ned value of the marker or variable under study. Such prediction may
allow a more precise schedule of visits to the hospital, for example. The the-
oretical complexity underlying point processes prediction exercises and the
unavailability of explicit numerical solution (Daley and Vere-Jones, 2008) sug-
gest resorting to Monte Carlo approaches. Here we focus on the ability of our
model to predict the hitting time for a given threshold for the mark based on
simulation. In fact, since the expression of the conditional intensity function
is known, simulation of the marked point process is straightforward.

To illustrate the approach we assume that the process is observed until
time t53 = 85 days and predict the time t54 when the mark Y (t54) reaches
the level assumed of interest 0.356. First we estimate the model EVOL us-
ing observations up t53 and proceed using the simulation design described in
Section 4.1. The Monte Carlo study comprised 500 replications (R) and the
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corresponding results are assessed by MAPE4 and MAE5 errors, presented in
Table 5. Figure 4 shows the boxplot for prediction errors.

Prediction of time tn
MAPE 1.66%
MAE 1.46

Table 5 Mean absolute percentage error (MAPE) and mean absolute error (MAE) for
prediction time t54, given Y (t54) =?0.356 and all history of the process up to t53. The true
t54 is 88.

-3
-2

-1
0

1
2

Prevision errors PLT

Fig. 4 Boxplot with prediction errors of predicted tn versus true tn = 88.

The results indicate that the proposed model may be useful for predictive
purposes.

6 Conclusions

In this work, we present a model approach that allows to deal with sampling
designs that depend on all past history of the process. This model allows
to take into account the evolutionary character of the process and is, in our
opinion more realistic, since it also considers the previous observations and the
temporal distance to which they occurred. To specify a process conditional on
the past we considered the intensity function and a marked point process
for the times T and marks Y . The results for the parameter estimation are
quite satisfactory, the algorithm is computationally e�cient and provides user

4 MAPE = 1
R

∑R
r=1
|t54−t̂54,r|

t54
× 100%

5 MAE = 1
R

∑R
r=1

∣∣t54 − t̂54,r∣∣
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high levels of �exibility, due to the direct speci�cation of the joint likelihood.
Further, the proposed model-based approach can be used to obtain predictions
on the next event, given a possible value for a future mark, allowing a better
knowledge of future events.

Nonetheless, the discussed model presents some di�culties when applied
to real data, namely in the de�nition of the initial values of the calibration
parameters (η and ψ) and we intend to de�ne a simple method to choose
suitable starting values for these parameters.

It is also of our interest to apply this model in other scienti�c areas, for
example in the context of �nancial markets, where the volume of transactions
may depend on the history of the process.
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