60 research outputs found

    A kinetic study of the oscillating combustion of hydrogen and syngas in well-stirred reactors

    Get PDF
    The establishment of permanent oscillations (“limit cycles”) has been often observed in the oxidation of several hydrocarbons in premixed, non-adiabatic systems like well-stirred reactors [1-3]. In such cases, the interaction between mass flow, heat exchange and chemical kinetics results in a periodic extinction and reignition of the system. Several operating parameters have been found to influence the establishment of periodic limit cycles: beyond the fuel type and the dilution level, the oscillatory behavior is affected by the reactor temperature, pressure and residence time. Thus, the high number of parameters makes theoretical analysis a necessary step to understand the causes of such phenomena. The simplest system to be studied is the combustion of hydrogen in a premixed reactor. Such configuration was first studied by Baulch et al. [2, 4, 5]. The oxidation of CO was also separately analyzed [6, 7]. In this work, a kinetic analysis of the hydrogen and syngas oxidation in isothermal, well stirred reactors is carried out. By adopting detailed kinetic mechanisms, the boundaries of the oscillating regions are defined through a parametric study. The Rate of Production (ROP) Analysis is adopted to understand the critical reaction paths

    Membrane and Electrochemical Based Technologies for the Decontamination of Exploitable Streams Produced by Thermochemical Processing of Contaminated Biomass

    Get PDF
    Phytoremediation is an emerging concept for contaminated soil restoration via the use of resilient plants that can absorb soil contaminants. The harvested contaminated biomass can be thermochemically converted to energy carriers/chemicals, linking soil decontamination with biomass-to-energy and aligning with circular economy principles. Two thermochemical conversion steps of contaminated biomass, both used for contaminated biomass treatment/exploitation, are considered: Supercritical Water Gasification and Fast Pyrolysis. For the former, the vast majority of contaminants are transferred into liquid and gaseous effluents, and thus the application of purification steps is necessary prior to further processing. In Fast Pyrolysis, contaminants are mainly retained in the solid phase, but a part appears in the liquid phase due to fine solids entrainment. Contaminants include heavy metals, particulate matter, and hydrogen sulfide. The purified streams allow the in-process re-use of water for the Super Critical Water Gasification, the sulfur-free catalytic conversion of the fuel-rich gaseous stream of the same process into liquid fuels and recovery of an exploitable bio-oil rich stream from the Fast Pyrolysis. Considering the fundamental importance of purification/decontamination to exploit the aforementioned streams in an integrated context, a review of available such technologies is conducted, and options are shortlisted. Technologies of choice include polymeric-based membrane gas absorption for desulfurization, electrooxidation/electrocoagulation for the liquid product of Supercritical Water Gasification and microfiltration via ceramic membranes for fine solids removal from the Fast Pyrolysis bio-oil. Challenges, risks, and suitable strategies to implement these options in the context of biomass-to-energy conversion are discussed and recommendations are made

    2023 Roadmap on ammonia as a carbon-free fuel

    Get PDF
    The 15 short chapters that form this 2023 ammonia-for-energy roadmap provide a comprehensive assessment of the current worldwide ammonia landscape and the future opportunities and associated challenges facing the use of ammonia, not only in the part that it can play in terms of the future displacement of fossil-fuel reserves towards massive, long-term, carbon-free energy storage and heat and power provision, but also in its broader holistic impacts that touch all three components of the future global food-water-energy nexus

    Study on cosmogenic activation above ground for the DarkSide-20k project

    Get PDF
    The activation of materials due to the exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k is a direct detection experiment for galactic dark matter particles, using a two-phase liquid argon time projection chamber filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the argon and other massive components of the set-up has been estimated; production of 120 t of radiopure UAr is foreseen. The expected exposure above ground and production rates, either measured or calculated, have been considered. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. Activation of titanium, considered in early designs but not used in the final design, is discussed. The activity of 39Ar induced during extraction, purification and transport on surface, in baseline conditions, is evaluated to be 2.8% of the activity measured in UAr from the same source, and thus considered acceptable. Other products in the UAr such as 37Ar and 3H are shown to not be relevant due to short half-life and assumed purification methods

    Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches

    Get PDF
    The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: 36Ar , 38Ar , and 40Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019

    Directionality of nuclear recoils in a liquid argon time projection chamber

    Full text link
    The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a target material from the WIMP elastic scattering. A promising experimental strategy for direct dark matter search employs argon dual-phase time projection chambers (TPC). One of the advantages of the TPC is the capability to detect both the scintillation and charge signals produced by NRs. Furthermore, the existence of a drift electric field in the TPC breaks the rotational symmetry: the angle between the drift field and the momentum of the recoiling nucleus can potentially affect the charge recombination probability in liquid argon and then the relative balance between the two signal channels. This fact could make the detector sensitive to the directionality of the WIMP-induced signal, enabling unmistakable annual and daily modulation signatures for future searches aiming for discovery. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data were taken with 72 keV NRs of known recoil directions. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/- 0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Experimental and numerical studies of mild combustion processes in model reactors

    Get PDF
    Lo scopo della tesi Ăš stato lo studio del comportamento di reattori chimici elementari nelle condizioni tipiche della combustione “dolce”. L’attivitĂ  Ăš stata essenzialmente di tipo sperimentale ed ha riguardato sia lo studio cinetico e dinamico di un reattore in flusso a perfetta miscelazione sia la progettazione di un reattore tubolare sul quale approfondire il comportamento di flussi reagenti in condizioni di alta temperatura e alta diluizione. Lo studio Ăš stato affiancato da un’accurata modellazione numerica che ha consentito di determinare gli stadi controllanti la cinetica di idrocarburi modello, come il metano e le sue miscele con idrogeno, nelle condizioni della combustione “dolce”. I risultati sperimentali hanno messo in luce l’insorgere di peculiari fenomeni di oscillazione della temperatura con una articolata fenomenologia di comportamenti dinamici. Sulla base di un confronto tra risultati sperimentali e numerici si sono individuati i meccanismi cinetici responsabili di questa fenomenologia. Quindi i risultati permettono da una parte la comprensione piĂč approfondita delle cinetiche di ossidazione del metano e dall’altra inducono l’individuazione delle condizioni operative in cui effettuare il processo di combustione “dolce”. Infatti tali regimi dinamici implicano una riduzione dell’efficienza del processo di combustione e un aumento della formazione di specie inquinanti. Inoltre Ăš stato progettato e realizzato un reattore tubolare, considerando tutte le problematiche annesse alla necessitĂ  di fronteggiare le alte temperature iniziali tipiche della combustione dolce e la miscelazione dei reagenti in queste estreme condizioni di lavoro. Tale configurazione reattoristica consentirĂ  l’approfondimento dello studio dell’ossidazione di idrocarburi e miscele-idrocarburi nelle condizioni tipiche della combustione dolce”
    • 

    corecore