4,873 research outputs found

    Ultrathin 2 nm gold as ideal impedance-matched absorber for infrared light

    Full text link
    Thermal detectors are a cornerstone of infrared (IR) and terahertz (THz) technology due to their broad spectral range. These detectors call for suitable broad spectral absorbers with minimalthermal mass. Often this is realized by plasmonic absorbers, which ensure a high absorptivity butonly for a narrow spectral band. Alternativly, a common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, it is possible to achieve a wavelength-independent absorptivity of up to 50 %, depending on the dielectric properties of the underlying substrate. However, existing absorber films typicallyrequire a thickness of the order of tens of nanometers, such as titanium nitride (14 nm), whichcan significantly deteriorate the response of a thermal transducers. Here, we present the application of ultrathin gold (2 nm) on top of a 1.2 nm copper oxide seed layer as an effective IR absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3) %, ranging from 2 μ\mum to 20 μ\mum, could be obtained and is further discussed. The presented gold thin-film represents analmost ideal impedance-matched IR absorber that allows a significant improvement of state-of-the-art thermal detector technology

    Proximity of Iron Pnictide Superconductors to a Quantum Tricritical Point

    Get PDF
    We determine the nature of the magnetic quantum critical point in the doped LaFeAsO using a set of constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The system turns out to be remarkably close to a quantum tricritical point, where the nature of the phase transition changes from first to second order. We compare with the effective field theory and discuss the experimental consequences.Comment: 4 pages, 4 figure

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Gap symmetry and structure of Fe-based superconductors

    Full text link
    The recently discovered Fe-pnictide and chalcogenide superconductors display low-temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within families as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely 'sign-changing s-wave' (s\pm) symmetry. We review theoretical aspects, materials properties and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.Comment: 86 pages, revie

    Measurement of the photon+b+b-jet production differential cross section in ppˉp\bar{p} collisions at \sqrt{s}=1.96~\TeV

    Get PDF
    We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Search for the Higgs boson in lepton, tau and jets final states

    Get PDF
    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We report a search for a narrow ttbar resonance that decays into a lepton+jets final state based on an integrated luminosity of 5.3/fb of proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0 Collaboration at the Fermilab Tevatron Collider. We set upper limits on the production cross section of such a resonance multiplied by its branching fraction to ttbar which we compare to predictions for a leptophobic topcolor Z' boson. We exclude such a resonance at the 95% confidence level for masses below 835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
    corecore