149 research outputs found

    Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information related to malaria vectors is very limited in Bangladesh. In the changing environment and various <it>Anopheles </it>species may be incriminated and play role in the transmission cycle. This study was designed with an intention to identify anopheline species and possible malaria vectors in the border belt areas, where the malaria is endemic in Bangladesh.</p> <p>Methods</p> <p><it>Anopheles </it>mosquitoes were collected from three border belt areas (Lengura, Deorgachh and Matiranga) during the peak malaria transmission season (May to August). Three different methods were used: human landing catches, resting collecting by mouth aspirator and CDC light traps. Enzyme-linked immunosorbent assay (ELISA) was done to detect <it>Plasmodium falciparum</it>, <it>Plasmodium vivax</it>-210 and <it>Plasmodium vivax</it>-247 circumsporozoite proteins (CSP) from the collected female species.</p> <p>Results</p> <p>A total of 634 female <it>Anopheles </it>mosquitoes belonging to 17 species were collected. <it>Anopheles vagus </it>(was the dominant species (18.6%) followed by <it>Anopheles nigerrimus </it>(14.5%) and <it>Anopheles philippinensis </it>(11.0%). Infection rate was found 2.6% within 622 mosquitoes tested with CSP-ELISA. Eight (1.3%) mosquitoes belonging to five species were positive for <it>P. falciparum</it>, seven (1.1%) mosquitoes belonging to five species were positive for <it>P. vivax </it>-210 and a single mosquito (0.2%) identified as <it>Anopheles maculatus </it>was positive for <it>P. vivax</it>-247. No mixed infection was found. Highest infection rate was found in <it>Anopheles karwari </it>(22.2%) followed by <it>An. maculatus </it>(14.3%) and <it>Anopheles barbirostris </it>(9.5%). Other positive species were <it>An. nigerrimus </it>(4.4%), <it>An. vagus </it>(4.3%), <it>Anopheles subpictus </it>(1.5%) and <it>An. philippinensis </it>(1.4%). <it>Anopheles vagus </it>and <it>An. philippinensis </it>were previously incriminated as malaria vector in Bangladesh. In contrast, <it>An. karwari</it>, <it>An. maculatus</it>, <it>An. barbirostris</it>, <it>An. nigerrimus </it>and <it>An. subpictus </it>had never previously been incriminated in Bangladesh.</p> <p>Conclusion</p> <p>Findings of this study suggested that in absence of major malaria vectors there is a possibility that other <it>Anopheles </it>species may have been playing role in malaria transmission in Bangladesh. Therefore, further studies are required with the positive mosquito species found in this study to investigate their possible role in malaria transmission in Bangladesh.</p

    G × E interactions as a basis for toxicological uncertainty

    Get PDF
    To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of “genetic” influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present “gene expression” influences is summarized here as Ge. Also, the concept of “environment” needs some re-consideration in situations where exposure timing (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects Ge This implies that it changes the model system. The interaction of Ge with Et might be denoted as Ge × Et We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM)

    Familial Longevity Is Marked by Lower Diurnal Salivary Cortisol Levels: The Leiden Longevity Study

    Get PDF
    BACKGROUND: Reported findings are inconsistent whether hypothalamic-pituitary-adrenal (HPA) signaling becomes hyperactive with increasing age, resulting in increasing levels of cortisol. Our previous research strongly suggests that offspring from long-lived families are biologically younger. In this study we assessed whether these offspring have a lower HPA axis activity, as measured by lower levels of cortisol and higher cortisol feedback sensitivity. METHODS: Salivary cortisol levels were measured at four time points within the first hour upon awakening and at two time points in the evening in a cohort comprising 149 offspring and 154 partners from the Leiden Longevity Study. A dexamethasone suppression test was performed as a measure of cortisol feedback sensitivity. Age, gender and body mass index, smoking and disease history (type 2 diabetes and hypertension) were considered as possible confounding factors. RESULTS: Salivary cortisol secretion was lower in offspring compared to partners in the morning (Area Under the Curve = 15.6 versus 17.1 nmol/L, respectively; p = 0.048) and in the evening (Area Under the Curve = 3.32 versus 3.82 nmol/L, respectively; p = 0.024). Salivary cortisol levels were not different after dexamethasone (0.5 mg) suppression between offspring and partners (4.82 versus 5.26 nmol/L, respectively; p = 0.28). CONCLUSION: Offspring of nonagenarian siblings are marked by a lower HPA axis activity (reflected by lower diurnal salivary cortisol levels), but not by a difference in cortisol feedback sensitivity. Further in-depth studies aimed at characterizing the HPA axis in offspring and partners are needed

    Thermal Evolution of the Proton Irradiated Structure in Tungsten–5 wt% Tantalum

    Get PDF
    We have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The interstitial-type a/2 dislocation loops emit self-interstitial atoms and glide to the free sample surface during the early stages of annealing. The resultant vacancy excess in the matrix originates vacancy-type a/2 dislocation loops that grow by loop and vacancy absorption in the temperature range of 600–900 °C. Voids form at 1000 °C, by either vacancy absorption or loop collapse, and grow progressively up to 1300 °C. Tantalum delays void formation by a vacancy-solute trapping mechanism

    Association of depressive disorders, depression characteristics and antidepressant medication with inflammation

    Get PDF
    Growing evidence suggests that immune dysregulation may be involved in depressive disorders, but the exact nature of this association is still unknown and may be restricted to specific subgroups. This study examines the association between depressive disorders, depression characteristics and antidepressant medication with inflammation in a large cohort of controls and depressed persons, taking possible sex differences and important confounding factors into account. Persons (18–65 years) with a current (N=1132) or remitted (N=789) depressive disorder according to DSM-IV criteria and healthy controls (N=494) were selected from the Netherlands Study of Depression and Anxiety. Assessments included clinical characteristics (severity, duration and age of onset), use of antidepressant medication and inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)). After adjustment for sociodemographics, currently depressed men, but not women, had higher levels of CRP (1.33 versus 0.92 mg l−1, P<0.001, Cohen's d=0.32) and IL-6 (0.88 versus 0.72 pg ml−1, P=0.01, Cohen's d=0.23) than non-depressed peers. Associations reduced after considering lifestyle and disease indicators — especially body mass index — but remained significant for CRP. After full adjustment, highest inflammation levels were found in depressed men with an older age of depression onset (CRP, TNF-α). Furthermore, inflammation was increased in men using serotonin–norepinephrine reuptake inhibitors (CRP, IL-6) and in men and women using tri- or tetracyclic antidepressants (CRP), but decreased among men using selective serotonin reuptake inhibitors (IL-6). In conclusion, elevated inflammation was confirmed in depressed men, especially those with a late-onset depression. Specific antidepressants may differ in their effects on inflammation

    The relationship between basal and acute HPA axis activity and aggressive behavior in adults

    Get PDF
    The hypothalamic–pituitary–adrenal (HPA) axis seems to play a major role in the development, elicitation, and enhancement of aggressive behavior in animals. Increasing evidence suggests that this is also true for humans. However, most human research on the role of the HPA axis in aggression has been focusing on highly aggressive children and adolescent clinical samples. Here, we report on a study of the role of basal and acute HPA axis activity in a sample of 20 healthy male and female adults. We used the Taylor Aggression Paradigm to induce and measure aggression. We assessed the cortisol awakening response as a trait measure of basal HPA axis activity. Salivary free cortisol measures for the cortisol awakening response were obtained on three consecutive weekdays immediately following awakening and 30, 45, and 60 min after. Half of the subjects were provoked with the Taylor Aggression Paradigm to behave aggressively; the other half was not provoked. Acute HPA axis activity was measured four times, once before and three times after the induction of aggression. Basal cortisol levels were significantly and negatively related to aggressive behavior in the provoked group and explained 67% of the behavioral variance. Cortisol levels following the induction of aggression were significantly higher in the provoked group when baseline levels were taken into account. The data implicate that the HPA axis is not only relevant to the expression of aggressive behavior in clinical groups, but also to a large extent in healthy ones

    <i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase

    Get PDF
    <div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div

    Region-Specific Expression of Mitochondrial Complex I Genes during Murine Brain Development

    Get PDF
    Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase) may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome) to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks). With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations – known to be associated with higher cognitive functions of the mammalian brain – strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders
    corecore