264 research outputs found
Food allergy in the Netherlands: differences in clinical severity, causative foods, sensitization and DBPCFC between community and outpatients
Background: It is unknown whether food allergy (FA) in an unselected population is comparable to those from an outpatient clinic population. Objective: To discover if FA in a random sample from the Dutch community is comparable to that of outpatients. Methods: This study was part of the Europrevall-project. A random sample of 6600 adults received a questionnaire. Those with symptoms to one of 24 defined priority foods were tested for sΙgE. Participants with a positive case history and elevated sIgE were evaluated by double-blind placebo-controlled food challenge (DBPCFC). Outpatients with a suspicion of FA were evaluated by questionnaire, sIgE and DBPCFC. Results: In the community, severe symptoms were reported less often than in outpatients (39.3% vs. 54.3%). Participants in the community were less commonly sensitized to any of the foods. When selecting only those with a probable FA (i.e. symptoms of priority food and elevation of sIgE to the respective food), no major differences were observed with respect to severity, causative foods, sensitization and DBPCFC between the groups. Conclusion: In the Netherlands, there are large differences in self-reported FA between community and outpatients. However, Dutch community and outpatients with a probable FA do not differ with respect to severity, causative foods, sensitization and DBPCFC-outcome
Patterns and flow in frictional fluid dynamics
Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Recommended from our members
In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention
Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans
Flow-to-fracture transition and pattern formation in a discontinuous shear thickening fluid
Recent theoretical and experimental work suggests a frictionless-frictional transition with increasing inter-particle pressure explains the extreme solid-like response of discontinuous shear thickening suspensions. However, analysis of macroscopic discontinuous shear thickening flow in geometries other than the standard rheometry tools remain scarce. Here we use a Hele-Shaw cell geometry to visualise gas-driven invasion patterns in discontinuous shear thickening cornstarch suspensions. We plot quantitative results from pattern analysis in a volume fraction-pressure phase diagram and explain them in context of rheological measurements. We observe three distinct pattern morphologies: viscous fingering, dendritic fracturing, and system-wide fracturing, which correspond to the same packing fraction ranges as weak shear thickening, discontinuous shear thickening, and shear-jammed regimes
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m3 volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species
Activity and safety of crizotinib in patients with advanced clear cell sarcoma with MET alterations. European Organization for Research and Treatment of Cancer phase 2 trial 90101 "CREATE"
BACKGROUND: Clear cell sarcoma (CCSA) is an orphan malignancy, characterised by a specific t(12;22) translocation, leading to rearrangement of the EWSR1 gene and overexpression of MET. We prospectively investigated the efficacy and safety of the tyrosine kinase inhibitor (TKI) crizotinib in patients with advanced or metastatic CCSA. PATIENTS AND METHODS: Patients with CCSA received oral crizotinib 250 mg twice daily. Primary endpoint was objective response rate (ORR), secondary endpoints included duration of response, disease control rate (DCR), progression-free survival (PFS), progression-free rate (PFR), overall survival (OS), overall survival rate (OSR) and safety. The study design focused on MET + disease with documented rearrangement of the EWSR1 gene by fluorescence in situ hybridization (FISH). RESULTS: Among 43 consenting patients with the local diagnosis of CCSA, 36 had centrally confirmed CCSA, 28 of whom were eligible, treated and evaluable. 26/28 patients had MET + disease, of whom one achieved a confirmed partial response and 17 had stable disease (SD) (ORR 3.8%, 95% confidence interval:0.1-19.6). Further efficacy endpoints in MET + CCSA were DCR:69.2% (48.2-85.7%), median PFS:131 days (49-235), median OS:277 days (232-442). The 3, 6, 12 and 24 month PFR was 53.8% (34.6-73.0), 26.9% (9.8-43.9), 7.7% (1.3-21.7) and 7.7% (1.3-21.7), respectively. Among two evaluable MET - patients, one had SD and one had progression. The most common treatment-related adverse events were nausea (18/34[52.9%]), fatigue (17/34[50.0%]), vomiting (12/34[35.3%]), diarrhea (11/34[32.4%]), constipation (9/34[26.5%] and blurred vision (7/34[20.6%]). CONCLUSIONS: The PFR with crizotinib in MET + CCSA is similar to results achieved first-line in metastatic soft tissue sarcomas with single-agent doxorubicin. In further lines, the PFS is similar to pazopanib in previously treated sarcoma patients
Geographical variation in morphology of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae)
Chaetosiphella stipae stipae is a xerothermophilous aphid, associated with Palaearctic temperate steppe zones or dry mountain valleys, where there are grasses from the genus Stipa. Its geographical distribution shows several populations that are spread from Spain, across Europe and Asia Minor, to Mongolia and China. Geographical variation in chaetotaxy and other morphological features were the basis to consider whether individuals from different populations are still the same species. Moreover, using Ch. stipae stipae and Stipa species occurrences, as well as climatic variables, we predict potential geographical distributions of the aphid and its steppe habitat. Additionally, for Stipa species we projected current climatic conditions under four climate change scenarios for 2050 and 2070. While highly variable, our results of morphometric analysis demonstrates that all Ch. stipae stipae populations are one very variable subspecies. And in view of predicted climate change, we expect reduction of Stipa grasslands. The disappearance of these ecosystems could result in stronger separation of the East-European and Asian steppes as well as European ‘warm-stage’ refuges. Therefore, the geographic morphological variability that we see today in the aphid subspecies Ch. stipae stipae may in the future lead to speciation and creation of separate subspecies or species
Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose. However, a suppressor mutant that grew on glucose but not on the other two sugars was spontaneously isolated from the PTS-negative strain WT Delta ptsH. The suppressor strain SPH2, unlike the wild-type strain, exhibited a phenotype of resistance to 2-deoxyglucose which is known to be a toxic substrate for the glucose-PTS of this microbe, suggesting that strain SPH2 utilizes glucose via a different system involving a permease and native glucokinases. Analysis of the C. glutamicum genome sequence using Escherichia coli galactose permease, which can transport glucose, led to the identification of two candidate genes, iolT1 and iolT2, both of which have been reported as myo-inositol transporters. When cultured on glucose medium supplemented with myo-inositol, strain WT Delta ptsH was able to consume glucose, suggesting that glucose uptake was mediated by one or more myo-inositol-induced transporters. Overexpression of iolT1 alone and that of iolT2 alone under the gapA promoter in strain WT Delta ptsH rendered the strain capable of growing on glucose, proving that each transporter played a role in glucose uptake. Disruption of iolT1 in strain SPH2 abolished growth on glucose, whereas disruption of iolT2 did not, revealing that iolT1 was responsible for glucose uptake in strain SPH2. Sequence analysis of the iol gene cluster and its surrounding region identified a single-base deletion in the putative transcriptional regulator gene Cgl0157 of strain SPH2. Introduction of the frameshift mutation allowed strain WT Delta ptsH to grow on glucose, and further deletion of iolT1 abolished the growth again, indicating that inactivation of Cgl0157 under a PTS-negative background can be a means by which to express the iolT1-specified glucose uptake bypass instead of the native PTS. When this strategy was applied to a defined lysine producer, the engineered strain displayed increased lysine production from glucose.ArticleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 90(4):1443-1451 (2011)journal articl
- …