2,820 research outputs found

    Optimal control-based methodology for active vibration control of pedestrian structures

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Civil structures such as floor systems with open-plan layouts or lightweight footbridges can be susceptible to excessive levels of vibrations caused by human activities. Active vibration control (AVC) via inertial-mass actuators has been shown to be a viable technique to mitigate vibrations, allowing structures to satisfy vibration serviceability limits. It is generally considered that the determination of the optimal placement of sensors and actuators together with the output feedback gains leads to a tradeoff between the regulation performance and the control effort. However, the "optimal" settings may not have the desired effect when implemented because simplifications assumed in the control scheme components may not be valid and/or the actuator/sensor limitations are not considered. This work proposes a design methodology for multi-input multi-output vibration control of pedestrian structures to simultaneously obtain the sensor/actuator placement and the control law. This novel methodology consists of minimising a performance index that includes all the significant practical issues involved when inertial-mass actuators and accelerometers are used to implement a direct velocity feedback in practice. Experimental results obtained on an in-service indoor walkway confirm the viability of the proposed methodology.The authors acknowledge the financial support provided by the Fundación Caja Madrid through the grant “II Convocatoria de Becas de Movilidad para profesores de las universidades públicas de Madrid durante el curso académico 2012/2013” and also the UK Engineering and Physical Sciences Research Council (EPSRC) though grant EP/J004081/2 entitled “Advanced Technologies for Mitigation of Human-Induced Vibration”

    Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data

    Get PDF
    Adverse effects of glucocorticoids have been abundantly reported. Published reports on low dose glucocorticoid treatment show that few of the commonly held beliefs about their incidence, prevalence, and impact are supported by clear scientific evidence. Safety data from recent randomised controlled clinical trials of low dose glucocorticoid treatment in RA suggest that adverse effects associated with this drug are modest, and often not statistically different from those of placebo

    A straightforward multiallelic significance test for the Hardy-Weinberg equilibrium law

    Get PDF
    Much forensic inference based upon DNA evidence is made assuming Hardy-Weinberg Equilibrium (HWE) for the genetic loci being used. Several statistical tests to detect and measure deviation from HWE have been devised, and their limitations become more obvious when testing for deviation within multiallelic DNA loci. The most popular methods-Chi-square and Likelihood-ratio tests-are based on asymptotic results and cannot guarantee a good performance in the presence of low frequency genotypes. Since the parameter space dimension increases at a quadratic rate on the number of alleles, some authors suggest applying sequential methods, where the multiallelic case is reformulated as a sequence of “biallelic” tests. However, in this approach it is not obvious how to assess the general evidence of the original hypothesis; nor is it clear how to establish the significance level for its acceptance/rejection. In this work, we introduce a straightforward method for the multiallelic HWE test, which overcomes the aforementioned issues of sequential methods. The core theory for the proposed method is given by the Full Bayesian Significance Test (FBST), an intuitive Bayesian approach which does not assign positive probabilities to zero measure sets when testing sharp hypotheses. We compare FBST performance to Chi-square, Likelihood-ratio and Markov chain tests, in three numerical experiments. The results suggest that FBST is a robust and high performance method for the HWE test, even in the presence of several alleles and small sample sizes

    Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy

    Get PDF
    OBJECTIVE Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features. METHODS High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group. RESULTS Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology. CONCLUSION These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients

    Politicians polarize and experts depolarize public support for COVID-19 management policies across countries

    Get PDF
    Significance Political polarization impeded public support for policies to address the spread of COVID-19, much as polarization hinders responses to other societal challenges. The present cross-country study demonstrates how the cues from political elites and affective polarization are analogous across countries addressing COVID-19. Far from being an outlier, the United States faces polarization challenges similar to those of other countries. Importantly, the results demonstrate that policies to combat public health crises are more supported when proposed by nonpartisan experts and bipartisan coalitions of political leaders. These results provide clear guidance on depolarizing communication strategies to improve global responses to health crises

    Gestational age influences the early microarchitectural changes in response to mechanical ventilation in the preterm lamb lung

    Get PDF
    Background: Preterm birth is associated with abnormal lung architecture, and a reduction in pulmonary function related to the degree of prematurity. A thorough understanding of the impact of gestational age on lung microarchitecture requires reproducible quantitative analysis of lung structure abnormalities. The objectives of this study were (1) to use quantitative histological software (ImageJ) to map morphological patterns of injury resulting from delivery of an identical ventilation strategy to the lung at varying gestational ages and (2) to identify associations between gestational age-specific morphological alterations and key functional outcomes. Method: Lung morphology was compared after 60 min of a standardized ventilation protocol (40 cm H2O sustained inflation and then volume-targeted positive pressure ventilation with positive end-expiratory pressure 8 cm H2O) in lambs at different gestations (119, 124, 128, 133, 140d) representing the spectrum of premature developmental lung states and the term lung. Age-matched controls were compared at 124 and 128d gestation. Automated and manual functions of Image J were used to measure key histological features. Correlation analysis compared morphological and functional outcomes in lambs aged ≤128 and >128d. Results: In initial studies, unventilated lung was indistinguishable at 124 and 128d. Ventilated lung from lambs aged 124d gestation exhibited increased numbers of detached epithelial cells and lung tissue compared with 128d lambs. Comparing results from saccular to alveolar development (120-140d), lambs aged ≤124d exhibited increased lung tissue, average alveolar area, and increased numbers of detached epithelial cells. Alveolar septal width was increased in lambs aged ≤128d. These findings were mirrored in the measures of gas exchange, lung mechanics, and molecular markers of lung injury. Correlation analysis confirmed the gestation-specific relationships between the histological assessments and functional measures in ventilated lambs at gestation ≤128 vs. >128d.Conclusion: Image J allowed rapid, quantitative assessment of alveolar morphology, and lung injury in the preterm lamb model. Gestational age-specific patterns of injury in response to delivery of an identical ventilation strategy were identified, with 128d being a transition point for associations between morphological alterations and functional outcomes. These results further support the need to develop individualized respiratory support approaches tailored to both the gestational age of the infant and their underlying injury response

    Riparian ecotones and spatial variation of fish assemblages in Portuguese lowland streams

    Get PDF
    The first results of a long-term study on the role of riparian ecotones on the population and community dynamics of Iberian stream fish are presented and discussed . Riparian and macrophyte cover, bank slope and depth were among the most important variables affecting fish distribution . In general small fish favoured shallow areas with high macrophyte cover, whereas large fish dominated in deep areas with a high riparian cover . Slight spatial changes in terrestrial prey use were found suggesting a minor role for this resource during autumn . Finally, no significant spatial differences were found for linear growth, although some differences were obtained for the condition facto

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
    corecore