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Abstract

Civil structures such as floor systems with open-plan layouts or lightweight

footbridges can be susceptible to excessive levels of vibrations caused by hu-

man activities. Active vibration control (AVC) via inertial-mass actuators

has been shown to be a viable technique to mitigate vibrations, allowing

structures to satisfy vibration serviceability limits. It is generally considered

that the determination of the optimal placement of sensors and actuators

together with the output feedback gains leads to a tradeoff between the reg-

ulation performance and the control effort. However, the “optimal” settings

may not have the desired effect when implemented because simplifications

assumed in the control scheme components may not be valid and/or the ac-

tuator/sensor limitations are not considered. This work proposes a design

methodology for multi-input multi-output vibration control of pedestrian
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structures to simultaneously obtain the sensor/actuator placement and the

control law. This novel methodology consists of minimising a performance

index that includes all the significant practical issues involved when inertial-

mass actuators and accelerometers are used to implement a direct velocity

feedback in practice. Experimental results obtained on an in-service indoor

walkway confirm the viability of the proposed methodology.

Keywords: Active vibration control, Inertial-mass actuators, MIMO

control, Human-induced vibrations, Floor vibrations, Optimal control.

1. Introduction

Improvements in design and construction methods have led to light and

slender floor structures which have increased susceptibility to vibration. This

is exacerbated by the current trend towards design of more open-plan struc-

tures. Examples of significant vibrations due to human-induced excitations

have been found in open-plan floors and footbridges, as well as other struc-

tures [1, 2]. These structures satisfy ultimate limit state criteria but have

the potential of attracting complaints due to excessive human-induced vibra-

tions [3]. Active vibration control (AVC) via inertial-mass actuators has been

shown to significantly reduce the level of response, allowing otherwise exces-

sively lively structures to satisfy vibration serviceability limits. However,

AVC is a relatively new area of research in the civil engineering commu-

nity and, as such, there are a number of obstacles that must be overcome

before the field can mature fully [4]. One of these obstacles is the limita-

tions of inertial-mass actuators, such as force and stroke saturations and

low-frequency response. Single-input single-output (SISO) control strategies
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dealing with these problems have been proposed [5, 6, 7]. Here, the stability

of the overall system is guaranteed and the sensitivity to stroke saturation,

which can damage the inertial-mass actuator hardware, is alleviated.

It has been shown that the use of only one inertial-mass actuator may

limit the number of controlled vibration modes since the mode shape of a

mode to be controlled should have sufficiently large amplitude at the control

location. In addition, the dynamics of inertial-mass actuators also limit the

maximum damping imparted to a structure. One obvious solution is to use

multiple SISO control schemes, which are designed independently for each lo-

cation (this strategy is commonly denoted as multi-SISO control). Although

multi-SISO control can be a viable solution [8], it may be of limited efficiency

since the structural system does not act independently at each control loca-

tion (i.e., a force applied at one location will influence the structural response

at another location for every mode shape that is non-zero at both locations).

A better performance can be achieved if a multi-input multi-output (MIMO)

control strategy is used. This was shown in [9], where an optimal direct out-

put velocity feedback (DVF) MIMO controller was presented. This DVF

MIMO control strategy finds the optimal gain matrix and the optimal lo-

cation for a predefined number of actuators and sensors. The optimal sen-

sor/actuator placement and the gain matrix is obtained by minimising a

performance index (PI) that considers the amplitude and duration of the

vibration and the maximum force imparted for each actuator. Simulation

results were presented in [9], demonstrating the advantages of using MIMO

control as opposed to SISO control. However, the controller proposed in [9]

considers an ideal DVF limited only by the maximum actuator force. To im-
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plement DVF using inertial-mass actuators, the following additional issues

have to be carefully considered:

• the actuator bandwidth (i.e., frequency response) significantly affects

the stability of the overall control scheme and limits the maximum

damping imparted to the structure,

• the actuator stroke saturation, which also limits the maximum damp-

ing imparted, could result in dramatic adverse effects on the actuator

performance and its hardware,

• the velocity is obtained by integrating the output signal of an ac-

celerometer, necessitating the use of a lossy integrator, which affects

the stability of the control scheme,

• a low-pass filter may be required to guarantee the finite gain property

of the control loop at high frequencies, avoiding spillover problems [10],

and

• the frequency bandwidth where humans perceive the vibration [11] may

be considered to focus the control effort on the most important vibra-

tion modes.

These issues were not considered in [9] and hence the method presented

there is not implementable as such. The work presented here builds on the

idea presented in [9] and considers the aforementioned practical issues to

propose a novel control design methodology. This methodology is illustrated

by designing and testing an AVC for an in-service indoor walkway.
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This paper is organised as follows. Section 2 explains the control scheme

elements paying special attention to the inclusion of the practical issues into

the closed-loop and to the definition of a weighted state vector that takes

into account the human vibration perception. Section 3 details the design

methodology. Section 4 provides the description of the in-service indoor

walkway and the experimental implementation of the design methodology

on the structure. Section 5 concludes the paper.

2. Control scheme

This section explains the general scheme shown in Fig. 1 used to define an

optimal DVF MIMO control from the proposed optimisation design process,

which is also included in this section. The dynamics included in Fig. 1 are

grouped into the following blocks:

1. The flexible structure, such as a floor or lightweight footbridge, which is

modelled by n vibration modes. The inputs are the force generated by

p actuators (us) and r perturbations (ws). The accelerations measured

by a set of accelerometers at q different locations (ya) are considered

as control outputs.

2. The additional dynamics needed to obtain the velocity from the ac-

celerometers are denoted as lossy integrators. The lossy integrators are

considered as ideal integrators plus high-pass filters [12]. Thus, each

lossy integrator carries out the magnitude and phase shift of an ideal

integrator at frequencies above the cut-off frequency of the high-pass

filter whilst removing any DC component and avoiding unnecessary

high sensitivity to stroke saturation at low frequencies.
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3. The control gain matrix and the required low-pass filters, which are

required to guarantee the finite gain property of the control loop at

high frequencies, avoiding spillover problems [10].

4. The saturation nonlinearity models the actuator force limitation, which

is limited by the maximum power amplifier input. This maximum

value can be decreased to reduce the risk of stroke saturation but also

reducing the actuator performance.

5. The dynamics of the inertial-mass actuators.
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Figure 1: General control scheme.

2.1. Description of the control scheme components

For the sake of simplicity, the flexible structure and the integrators are

grouped so that the output of the resulting system is ys, which is the velocity

at q locations. Thus, the standard state-space representation of the model

for this flexible structure is represented as follows:

ẋs = Asxs +Bs1us +Bs2ws (1)

ys = Csxs.
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If model (1) is defined in modal coordinates, the state-space matrices are as

follows [13]:

As =





0 I

−Ω2 −2ZΩ



 , Bs1 =





0

Φu



 , (2)

Bs2 =





0

Φw



 , Cs =
[

Φy 0

]

,

where Ω is a n × n diagonal matrix formed by the natural frequencies

([ω1, · · · , ωn]), Z is a n × n diagonal matrix formed by the damping ratios

([ζ1, · · · , ζn]) and Φu, Φy and Φw are matrices with dimensions n× p, q× n

and n× r, respectively. Each kth column of Φu and Φw and each row of Φy

is formed by the kth vibration mode values at the positions of the actuators

(Φu), perturbations (Φw) and sensors (Φy).

The high-pass filters utilised in this work are second-order Butterworth

high-pass filters with cut-off frequency equal to ωI . The chosen value of ωI

is the result of the tradeoff between the resonance frequency of actuator,

since small values of ωI increase the risk of stroke saturation, and the first

vibration mode of the structure, since higher values of ωI reduce the damping

imparted by a DVF controller. The state-space model of each high-pass filter

is as follows:

ẋI = AITxI +BITys (3)

yI = CITxI +DITys,

being the matrices AIT = diag (AI , · · · ,AI), BIT = diag (BI , · · · ,BI),

CIT = diag (CI , · · · ,CI) and DIT = diag (ω4
I , · · · , ω4

I ) block diagonal, where
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AI , BI and CI are defined as follows [14]:

AI =





0 1

−ω2
I −2

√
2ωI



 , BI =





0

1



 , CI =
[

−ω4
I −2

√
2ω3

I

]

. (4)

The control gain matrix (K) in a general form is defined as:

K =

















K11 K12 · · · K1q

K21 K22 · · · K2q

...
...

. . .
...

Kp1 Kp2 · · · Kpq

















, (5)

in which Kpq is the control gain applied at control input p due to control

output q.

The low-pass filters to avoid spillover problems [10] are defined as follows:

ẋLP = ALPT
xLP +BLPT

yI (6)

yLP = CLPT
xLP ,

being the matricesALPT
= diag (ALP , · · · ,ALP ), BLPT

= diag (BLP , · · · ,BLP )

and CLPT
= diag (CLP , · · · ,CLP ) block diagonal, where ALP , BLP and CLP

are defined as follows [14]:

ALP =





0 1

−ω2
LP −2

√
2ωLP



 , BLP =





0

1



 , CLP =
[

ω2
LP 0

]

, (7)

The value of ωLP , which is the cut-off frequency, must be sufficiently

high when compared with the controlled vibration mode with the maximum

resonance frequency.

The outputs of the saturation block, which are the command voltage

inputs of the p actuators, are denoted by ûA. The actuator considered is
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an inertial actuator that generates forces through acceleration of an inertial

mass to the structure on which it is placed. The actuator consists of an

inertial (or moving) mass mA attached to a current-carrying coil moving in a

magnetic field created by an array of permanent magnets. The inertial mass

is connected to the frame by a suspension system. The mechanical part is

modelled by a spring stiffness kA and a viscous damping cA. The electrical

part is modelled by the resistance R, the inductance of the coil L and the

voice coil constant CE, which relates coil velocity and the back electromotive

force (Fig. 2(a)) [15]. Combining the mechanical and the electrical part,

the linear behaviour of the actuator can be closely described as a third-order

dynamic model. Thus, the state space model of the p actuators is as follows:

ẋA = AAT
xA +BAT

ûA (8)

yA = CAT
xA,

being the matrices AAT
= diag (AA, · · · ,AA), BAT

= diag (BA, · · · ,BA)

and CAT
= diag (CA, · · · ,CA) block diagonal, where AA, BA and CA are

defined as follows [16]:

AA =











0 0 ǫωA

1 0 ω2
A + 2ζAωAǫ

0 1 ǫ+ 2ζAωA











, BA =











0

0

gA











, CA =
[

0 0 1
]

, (9)

where the actuator is defined by gA > 0, its damping ratio ζA and natural

frequency ωA. The value of ǫ models the low-pass properties of the actuator.

The actuator in this work is an APS Dynamics Model 400 electrodynamic

shaker, which is shown in Fig. 2(b). The identified parameters of Eq. (9)

are [16]: ωA = 13.2 rad/s (2.1 Hz), ζA = 0.5, gA = 12000 and ǫ = 47.1.
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(b) APS Dynamics Model 400 Shaker.

Figure 2: Inertial-mass actuator.

2.2. State-space model of the closed-loop system

The state equation of the closed-loop system is obtained from Fig. 1 and

Eqs. (1)-(9), and results in

















ẋs

ẋI

ẋLP

ẋA

















=

















As 0 0 −BS1
CAT

BITCs AIT 0 0

BLPT
DITCs BLPT

CIT ALPT
0

0 0 BAT
KCs AAT

































xs

xI

xLP

xA

















(10)

+

















Bs

0

0

0

















ws.

The eigenvalues of the 2(n+2q+p)×2(n+2q+p) state-space matrix are con-

sidered into the restrictions defined in the design. These eigenvalues (i.e., the
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poles of the closed-loop system) are denoted by ζCLτ
ωCLτ

±jωCLτ

√

1− ζ2CLτ
,

where τ ∈ [1, · · · , 2(n+ 2q + p)] and j is the imaginary unit.

2.3. Human vibration perception

The vibration that can be perceived by a human depends on the direc-

tion of incidence to the human body, the frequency content of the vibration

(for a given amplitude) and the duration of sustained vibration, among other

factors. The frequency sensitivity variation for a body position can be taken

into account by attenuating or enhancing the system response for frequencies

where perception is less or more sensitive, respectively. The degree to which

the response is attenuated or enhanced is referred to as frequency weight-

ing. Thus, frequency weighting functions are applied in order to account

for the different acceptability of vibrations for different directions and body

positions. ISO 2631 [11] and BS 6841 [17] provide details for frequency and

direction weighting functions that can be applied which are all based on the

basicentric coordinate system shown in Fig. 3. These have been included

in current floor design guidelines such as the SCI guidance [18]. According

to ISO 2631, for z-axis vibration and standing and seating, the frequency

weighting function (Wk) is a filter with the frequency response shown in Fig.

4.

Human comfort under vibration is also related to the duration of sustained

vibration [19]. Thus, persistent vibrations should be penalised in the control

design, giving more importance to transient vibration of long-duration than

those of short-duration. This is taken into account by multiplying the system

response by an exponential time weighting (i.e., eαt), where α > 0 adds

a constraint in the relative stability of the controlled system. Note that
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Figure 3: Directions for vibration according to ISO 2631 [11] and BS 6841 [17] (after [18]).

Figure 4: Frequency weighting function Wk (thicker curve) and its asymptotic definition

(thinner curve) [11].
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persistent states are penalised more heavily as α is increased.

The human vibration perception is considered in the controller design by

weighting the state vector of the structure xs = [xs1 , · · · , xs2n ] (see Eq. (1))

as follows:

xsWl
=

(

eαtxsl(t)
)

∗ gFW (t), l ∈ [1, · · · , 2n], (11)

where (*) denotes the convolution process and gFW (t) is the impulse response

function of a system with the frequency response function (FRF) shown in

Fig. 4. Note that the weighted vector xsW is only used to calculate the PI

used to derive the optimal sensor/actuator locations and the gain matrix.

In other words, the weighting functions are not included in the closed-loop

system of Fig. 1.

3. Controller design methodology

The above section describes the closed-loop system at Eq. (10), where the

structure states variables xs are weighted at Eq. (11). Thus, the vector xsW

depends on the imparted damping by the designed control, the parameter α

(i.e., the duration of sustained vibration) and the frequency content of the

vibration. Therefore, the control design methodology considers xsW , mode

shapes and natural frequencies to define a PI, whose minimum provides the

optimal A/S location and gain matrix (Eq. (5)) that maximize vibration

reduction regarding the practical issues. This PI is defined as follows:

J(K,Λ) =
1

2

∫ tf

0

xT
sW

(K,Λ)QxsW (K,Λ)dt, (12)
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where the matrix Q is a 2n × 2n positive definite matrix, which is taken as

[9]

Q =





























ω2
1φ

2
1,max · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · ω2
nφ

2
n,max 0 · · · 0

0 · · · 0 φ2
1,max · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · φ2
n,max





























, (13)

in which φk,max is the maximum value of the kth eigenvector φk. Note that

the displacement states are weighted by the natural frequencies, thus making

the displacement states comparable to the velocity states. The variable Λ

contains the locations of a set of p actuators and q sensors. Finally, the value

of tf is the simulation time to obtain the PI, which must be large enough to

achieve the steady state of J(K,Λ) (i.e., the weighted vector xsW
∼= 0).

The design methodology consists of defining a set of input arguments to

find a set of outputs that minimizes the PI. The input arguments can be

group into:

1. System parameters. These parameters are: the models of the flexible

structure and inertial actuators, human vibration perception (α and

gFW (t)), the system perturbance to assess the controller performance

and the set of structural nodes (i.e., possible locations for A/S), which

is denoted by ΛPI .

2. Design parameters. These parameters may be not considered in the

optimization because they mainly depend on the open-loop response of

the structure and inertial actuators, reducing thus the computational
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cost. These parameters are the low-pass (ωLP ) and high-pass (ωI)

filters, the actuator saturation voltage and the minimum value of the

damping corresponding to the lower closed-loop poles of the actuator

dynamics, which is denoted by ζstroke.

The proposed design methodology is divided into the following steps:

Step 1: Obtain the models of the flexible structure and inertial actuators.

It can be obtained from a theoretical analysis, a finite element model

or an experimental identification.

Step 2: Define parameters of human vibration perception (α and gFW (t))

where 0 ≤ α ≤ mink (ζkωk) , ∀k ∈ [1, · · · , n]. Note that the upper limit

of α (mink (ζkωk)) guarantees that the system simulation converges to

zero. The function gFW (t) is defined in [11].

Step 3: Select the possible values for Λ (ΛPI). Note that ΛPI can be sim-

plified by a previous analysis, reducing the computational cost. This is

useful for complex structures with a large number of nodes.

Step 4: Define the values of ωLP , ωI the actuator saturation voltage and

ζstroke.

Step 5: Define the system perturbance to assess the controller performance.

Note that the design of optimal controllers for unknown disturbances is

not trivial since prescribed disturbances are needed within the design

process. The solution adopted in this work, similar to that used in

[9], is to approximate the influence of zero initial conditions and a

spatially distributed, but temporally impulsive, disturbance force by
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an appropriate initial condition and zero disturbance force. This is

achieved by introducing a non-zero initial condition to the velocity

states of the structure. Thus, the system perturbance is defined as

xs(0) = [xs1 = 0, · · · , xsn = 0, xsn+1
= ẋs1(0), · · · , xs2n = ẋsn(0)],

where each value of ẋsk(0) is obtained as follows:

ẋsk(0) = F0φk,max, (14)

where F0 represents the impulse loading applied to a particular vibra-

tion mode. Note that the impulsive force is applied to the point of

maximum amplitude of each vibration mode, creating thus an extreme

scenario for the initial disturbance. It is expected that the control

system will perform successfully under other loading conditions.

Step 6: Find the values of Λ and K that minimize J(K,Λ) of Eq. (12).

Operationally, the Step 4 is divided into the following substeps:

Step 6.1: The values of J are obtained for each Λ ∈ ΛPI as follows

JΛ = min
K

J(K,Λ), (15)

where each JΛ is calculated by using the MATLAB function fminsearch,

which minimises the function defined by the simulation of the control

scheme of Fig. 1 with the initial conditions defined by Eq. (14), sub-

jected to the stability of Eq. (10) and the restrictions associated with

α and ζstroke.

Step 6.2: The final values of K and Λ are those corresponding to the min-

imum value of JΛ, which is denoted as JOP and is defined as follows:

JOP = min
Λ

JΛ. (16)
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It should be remarked that Step 6 can be repeated for different values of

parameters defined in Step 4 in order to see the influence of them on JOP

and actuator stroke.

4. Experimental implementation

This section describes the experimental implementation of the AVC de-

sign methodology presented in Section 3 on an in-service indoor walkway.

Frequency and time response tests are carried out to examine the control

system performance.

4.1. Structure description

The test structure, which is a walkway sited in the University of Exeter

Forum Building (Fig. 5), is approximately 15 m long and 2.7 m wide, as

shown in Fig. 6. It was decided that a test grid of 39 test points (TP) would

be used (13 x 3 rows) to carry out an experimental modal analysis (EMA).

The excitation was provided by an APS Dynamics model 113 shaker, which

was placed sequentially at TPs 4 and 7. The acceleration response was

monitored by 13 QA-750 accelerometers. Thus, a total of six measurement

setups were taken for the modal test: three sets with roving accelerometers

for two actuator positions.

Data acquisition was carried out using a Data Physics Mobilyzer II digi-

tal spectrum analyser controlled using the SignalCalc software. Its configu-

ration was as follows: i) the actuator was driven with a random signal with

frequency band 0-80 Hz, ii) the response was monitored with frequency span

0-80 Hz and iii) a 10 second block size was used (hence frequency resolution

0.1 Hz) with 75% overlap using a Hanning window and stable averaging to
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acquire data for approximately 4 minutes, which was the length of time re-

quired to achieve sufficiently clean FRFs upon averaging out the effects of

unmeasured extraneous excitation.

(a) General view.

�

(b) Walking area.

Figure 5: Forum walkway (University of Exeter).

�

Figure 6: Test grid for the EMA.

The FRF data obtained were analysed using the ME’scope modal param-

eter estimation software to determine the structural modal properties from

EMA. Here, the multiple reference polynomial method was used for curve
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fitting the FRF data. These results were also verified by performing an anal-

ysis with the multiple reference AF polynomial method (a method based on

the stability of system poles). The properties of the first four modes obtained

are presented in Table 1 and the mode shapes are shown in Fig. 7. The good

accuracy of the model can be observed in Fig 8, which shows a comparison

between the experimental point accelerance FRF at TP 7 and its regenerated

counterpart based on the estimated modal properties.

Table 1: Modal properties for the first four vibration modes of the walkway.

Mode Number Natural Damping Modal φk,max

(bending or Frequency Ratio Mass

torsional) (Hz) (%) (Tonnes) (m)

1 (bending) 6.3 1.0 15 66.5 · 10−6

2 (torsional) 10.5 0.9 10 98.5 · 10−6

3 (bending) 14.6 2.1 39 25.6 · 10−6

4 (bending) 20.5 2.5 12 84.8 · 10−6
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(b) Second Vibration mode (torsional).
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Figure 7: Mode shapes of the first four vibration modes.
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Figure 8: FRF of the Forum walkway at TP 7. (- -) Experimental results and (—) model.
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4.2. AVC design

The objective of this section is to demonstrate the viability of the design

methodology by designing and implementing a SISO DVF and a MIMO DVF

with two sensors and actuators for the structure described above. The step-

by-step controller design methodology is followed from now on.

Step 1: The structure and the inertial actuators models are defined into

Sections 4.1 and 2.1, respectively.

Step 2: The value of α is chosen as 0.25.

Step 3: The structural nodes (ΛPI) considered in the design Step 1 are the

39 TPs used in the EMA (see the test grid of Fig. 6).

Step 4: The configuration is ζstroke = 0.35, ωI = 2π · 2 rad/s and ωLP =

2π · 30 rad/s. The actuator saturation voltage is chosen as 2 V, which

is maximum allowable saturation voltage, and 1.5 V. It can be noted

that the values of actuator saturation voltage are chosen as long as the

risks of stroke saturation and instability due to spillover are avoided

by choosing properly ωI and ωLP , respectively. On the one hand, the

value of ωI depends on the existing tradeoff between the sensitivity

at low frequencies (i.e. risk of stroke saturation) and the influence

of the low-frequency dynamics on DVF control performance. On the

other hand, the value of ωLP must guarantee the finite gain property of

the control loop at high frequencies, avoiding spillover problems [10],

whereas the significant vibration modes, which are the two first ones,

can be damped by the used DVF. Thus, the values of ωI = 2π · 2 rad/s
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and ωLP = 2π · 30 rad/s are obtained by a preliminary design, where

the stability, the damping performance and the risk of stroke saturation

are studied.

Step 5: Three different values for the impulse force F0 are used: 100, 1000

or 2670 N. Note that the value of 2670 N is the normalised maximum

force of an idealised heel-drop excitation [19].

Step 6: The stability condition of the closed-loop system of Eq. (10) is used

to define the initial conditions for K that minimises each JΛ.

Tables 2 and 3 show the values of JOP and the maximum stroke for the

three values of F0, ωI = 2π · 2 rad/s, ωLP = 2π · 30 rad/s. In addition, these

tables consider two values of actuator saturation voltage (1.5 and 2 V) in

order to show its influence on the controller performance and the maximum

actuator stroke. Moreover, the structure is modelled by the first seven vibra-

tion modes. The following conclusions can be derived from these tables: i) a

MIMO AVC reduces the energy of the system more than a SISO AVC for the

same design conditions (F0 and actuator saturation voltage), ii) the stroke

saturation is reduced if the actuator saturation voltage is equal to 1.5 V but

the energy of the system (JOP ) is increased (i.e., the damping performance

is worse), iii) the stroke saturation is not a problem in this practical im-

plementation since the maximum of these designs (52 mm) is less than the

maximum actuator stroke (65 mm) and iv) the gain matrix K can be chosen

as diagonal because K12 = K21 are negligible compared with K11 and K22.

The AVC designs chosen to be implemented were SISO with gain K11 =

926 placed at node 7 and MIMO with gains K11 = 625 and K22 = 769 placed
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Table 2: Optimal SISO designs for various initial forces and saturation voltages.

F0 Sat A/S node K11 JOP Stroke

(N) (V) (mm)

100 2 34 1042 1.97 · 10−5 31

100 1.5 34 1042 2.36 · 10−5 21

1000 2 33 973 7.11 · 10−3 28

1000 1.5 33 973 7.92 · 10−3 20

2670 2 7 926 6.84 · 10−2 52

2670 1.5 7 926 7.23 · 10−2 39

Table 3: Optimal MIMO designs for various initial forces and saturation voltages.

F0 Sat A/S nodes K11, K22, K12 JOP Stroke

(N) (V) (mm)

100 2 (32,33) (555,448,-2) 1.39 · 10−5 18

100 1.5 (32,33) (506,492,-2) 1.61 · 10−5 18

1000 2 (33,34) (830,155,-5) 5.22 · 10−3 40

1000 1.5 (33,34) (830,155,-5) 6.00 · 10−3 29

2670 2 (7,33) (625,769,-3) 5.64 · 10−2 51

2670 1.5 (7,33) (631,764,-3) 6.17 · 10−2 39

at nodes 7 and 33. The design corresponding to F0 = 2670 N was chosen

since it is representative of a worst-case scenario of loading. If the control

system is safe (regarding stroke saturation) for this case, it will be safe under

a variety of loading scenarios. Paying attention to both tables, it can be

observed that a saturation voltage of 2 V improves the PI (5 % for SISO
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and 9 % for MIMO). Besides, it can be observed that the MIMO designs

always improve upon the SISO designs. For instance, for the design chosen,

the PI for the MIMO design is 21 % smaller than the one of SISO. Finally,

the simulated FRFs of the Forum walkway at TP 7 are shown in Fig. 9,

where the imparted damping of both controllers can be seen. These show

that MIMO AVC is better than SISO AVC in terms of magnitude around

the first and second vibration mode.
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Figure 9: Simulated FRF’s of the Forum walkway at TP 7. (—) Without control, (- -)

MIMO and (-.-) SISO. Magnitude in dB referenced to (m/s2)/N .

4.3. Frequency and time response tests

The objective of this section is to show that both SISO and MIMO AVC

can be implemented in practice. The FRF response test was carried out by

placing an APS Dynamics model 113 shaker at TP 7. The configuration

of the data acquisition was the same as used in subsection 4.1. Fig. 10

shows the experimental FRF of the Forum walkway at TP 7, where it can

be seen that the MIMO AVC performed better than the SISO AVC in terms
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of magnitude around the first and second vibration mode. In addition, if the

FRFs obtained at TP 7 are compared against the simulated FRFs of Fig. 9,

it can be seen that the simulation and experimental data match quite well.
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Figure 10: Experimental FRF of the Forum walkway at TP 7. (—) Without control, (- -)

MIMO and (-.-) SISO. Magnitude in dB referenced to (m/s2)/N .

The structure vibration level was also measured by carrying out a single

pedestrian walking test with pacing rate of 2.1 Hz (126 beats per minute).

This rate was chosen so that its third harmonic would be 6.3 Hz and hence

excite the first bending mode. The test consisted of a single pedestrian walk-

ing from one end of the walkway to the other end and then back again, with

the pacing rate controlled by a handheld audible metronome. The results

of this measurement are shown in Fig. 11, where the Wk weighted response

acceleration and the 1 s running RMS are shown. When the structure was

not controlled, the maximum acceleration value was 0.17 m/s2, the peak 1 s

RMS value was 0.096 m/s2 and the R-factor was 19.12. This R-factor is

obtained by dividing the maximum value of the frequency weighted 1 s RMS

trend of acceleration by 0.005 m/s2 [17]. When the system was controlled by

the MIMO AVC, the maximum acceleration value was 0.04 m/s2, the peak
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1 s RMS value was 0.015 m/s2 and the R-factor was 3.05. Finally, when the

SISO AVC was used, the R-factor increased to 3.66, which was an increase of

20 % compared with the value of R-factor obtained with the MIMO AVC. It

must be noted that R-factors of 4 should not be exceeded for a low probabil-

ity of adverse comments [17]. Therefore, R-factors for single person walking

(both MIMO and SISO) can be considered acceptable by the design limits.

The performance of both controllers was also tested using a heel drop

excitation, which is an impulsive excitation useful in evaluation transient

response of floor structures and also in checking stability properties. These

results from these measurements are shown in Fig. 12, where it can be

seen that both controllers imparted significant damping compared with the

uncontrolled case.

Finally, a group random walking was also measured without control and

with the MIMO AVC. Fig. 13 shows 200 s of this test, where the vibration

reduction in terms of the maximum acceleration, R-factor and vibration dose

value (VDV) can be seen. Also, Fig. 14 shows the corresponding power

spectral density (PSD) of response of these group random walking tests. It

can be seen that: i) the maximum R-factor is reduced from 14.681 to 4.867,

ii) the VDV is reduced from 0.173 to 0.056 m/s1.75 and iii) the vibration

response between 0 and 20 Hz was practically eliminated. Finally, an R-

factor equal to 4.867 could be considered acceptable by the design limits

because some guidance recommends higher values of 8, which perhaps in

this situation given the bridge/floor nature of the walkway would actually

be more appropriate [17].

27



0 2 4 6 8 10 12 14 16 18
−0.2

−0.1

0

0.1

0.2

Time (s)

A
cc

el
er

at
io

n 
(m

/s2 )
Peak RMS=0.096 m/s2 R−factor=19.124

 

 

Acceleration
1 s RMS

(a) Uncontrolled.

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

Time (s)

A
cc

el
er

at
io

n 
(m

/s2 )

Peak RMS=0.015 m/s2 R−factor=3.053

 

 

Acceleration
1 s RMS

(b) Controlled MIMO.

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2

 

 

Time (s)

A
cc

el
er

at
io

n 
(m

/s2 )

Peak RMS=0.018 m/s2 R−factor=3.657

Acceleration
1 s RMS

(c) Controlled SISO.

Figure 11: Experimental results. Walking at 2.1 Hz (126 bpm).
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Figure 12: Experimental results. Heel drop.
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Figure 13: Experimental results. Group random walking.
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5. Conclusions

This work has proposed an AVC design methodology for controlling human-

induced vibration based on DVF and an optimal control. That is, a PI is

minimised in order to design simultaneously the controller parameters and

the actuator/sensor location. The methodology is totally general since it can

be considered within a SISO or MIMO strategy. Furthermore, it is imple-

mentable in the sense that all the significant practical issues are carefully

considered within the design process. That is, actuator dynamics, actuator

saturations, spillover effects and human perception dependency to frequency

and excitation time have been taken into account.

Results from experimental measurements conducted on an in-service in-

door walking have illustrated the viability of the presented methodology with

both SISO and MIMO design. It was observed that MIMO control improved

the results compared with SISO, even though the dynamics of this structure

are not representative of a typical floor structure with multiple vibration

modes locally spatially distributed, which is where MIMO strategies find

their particular interest. Hence, with the experience from this relatively sim-

ple experimental application, the authors plan to apply this methodology

to other structures with more complicated dynamics, particularly multi-bay

floor structures with high modal density.
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