3,497 research outputs found

    Electronic Circuits and Machines

    Get PDF
    This course covers the electrical characteristics of fundamental circuit components including resistors, capacitors and inductors in DC circuits, single-phase AC and three-phase AC circuits. Fundamental concepts of AC power and phasors are examined. The course also introduces the devices that generate and transform electrical power, as well as switching and protection of electrical circuits. Practical applications of motors, generators, transformers and operational amplifiers will be covered to provide non-electrical engineering majors a comprehensive understanding of electro-mechanical systems

    Semiconductor Devices

    Get PDF
    3 Class Hours, 0 Laboratory Hours, 3 Credit Hours Prerequisites: CHEM 1211, CHEM 1211L, EE 1000This course effectively applies the knowledge of chemistry and physics to understand the operating principles of various semiconductor devices. The course covers topics starting from the fundamental concepts of atomic and crystal structure, crystal growth, impurity doping and energy bands to the in-depth device operation and quantitative analysis of p-n junction diode, metal-semiconductor contacts and Schottky diode, BJTs and MOSFETs. Also fundamental operating principles of optoelectronic devices such as, LEDs and photodiodes are discussed. Simple device simulation components reinforces the understanding of various critical aspects of device operation. The course concludes with an experiment-based project on device characterization where students perform analysis on the experimentally acquired data to extract various important device parameters

    The Foraging Tunnel System of the Namibian Desert Termite, Baucaliotermes hainesi

    Get PDF
    The harvester termite, Baucaliotermes hainesi (Fuller) (Termitidae: Nasutitermitinae), is an endemic in southern Namibia, where it collects and eats dry grass. At the eastern, landward edge of the Namib Desert, the nests of these termites are sometimes visible above ground surface, and extend at least 60 cm below ground. The termites gain access to foraging areas through underground foraging tunnels that emanate from the nest. The looseness of the desert sand, combined with the hardness of the cemented sand tunnels allowed the use of a gasolinepowered blower and soft brushes to expose tunnels lying 5 to 15 cm below the surface. The tunnels form a complex system that radiates at least 10 to 15 m from the nest with crossconnections between major tunnels. At 50 to 75 cm intervals, the tunnels are connected to the surface by vertical risers that can be opened to gain foraging access to the surrounding area. Foraging termites rarely need to travel more than a meter on the ground surface. The tunnels swoop up and down forming high points at riser locations, and they have a complex architecture. In the center runs a smooth, raised walkway along which termites travel, and along the sides lie pockets that act as depots where foragers deposit grass pieces harvested from the surface. Presumably, these pieces are transported to the nest by a second group of termites. There are also several structures that seem to act as vertical highways to greater depths, possibly even to moist soil. A census of a single nest revealed about 45,000 termites, of which 71% were workers, 9% soldiers and 6% neotenic supplementary reproductives. The nest consisted of a hard outer “carapace” of cemented sand, with a central living space of smooth, sweeping arches and surfaces. A second species of termite, Promirotermes sp. nested in the outer carapace

    Longitudinal variation in O6-alkylguanine DNA-alkyltransferase activity in the human colon and rectum

    Get PDF
    In a systematic study of O6-alkylguanine DNA-alkyltransferase activity in the human colon and rectum, tumours were found to occur in regions of low activity. These results are consistent with the hypothesis that O6-alkylguanine DNA-alkyltransferase levels and alkylating agent exposure may be important determinants of large bowel tumorigenesis

    Insights into Hunter syndrome from the structure of iduronate-2-sulfatase

    Get PDF
    Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies.We acknowledge Diamond Light Source for time on beamline I03 under proposal MX6641. We thank Shire Pharmaceuticals for providing Elaprase (idursulfase) and Tom Terwilliger for helpful advice on multi-crystal averaging. We also thank Alexandre Bonvin for modifying HADDOCK to support the non-standard amino acid FGH (PDB code DDZ). R.J.R. is supported by a Principal Research Fellowship funded by the Wellcome Trust (Grant 082961/Z/07/Z), which also supported C.H.H. and M.D. A.Z. was supported by a Senior Research Fellowship from the British Heart Foundation (PG/09/072/27945). J.E.D. is supported by a Royal Society University Research Fellowship (UF100371). Support received from the US National Institutes of Health (grant P01GM063210 R.J.R.) is gratefully acknowledged. The research was facilitated by a Wellcome Trust Strategic Award (100140) to the Cambridge Institute for Medical Research

    Bio-energy retains its mitigation potential under elevated CO2

    Get PDF
    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink

    Comparative Tuberculosis (TB) Prevention Effectiveness in Children of Bacillus Calmette-Guérin (BCG) Vaccines from Different Sources, Kazakhstan

    Get PDF
    Except during a 1-year period when BCG vaccine was not routinely administered, annual coverage of infants with Bacillus Calmette-Guérin (BCG) in Kazakhstan since 2002 has exceeded 95%. BCG preparations from different sources (Japan, Serbia, and Russia) or none were used exclusively in comparable 7-month time-frames, September through March, in 4 successive years beginning in 2002. Our objective was to assess relative effectiveness of BCG immunization.Although there were differences in prevention effectiveness observed among the three BCG vaccines, all were protective. The Japanese vaccine (currently used in Kazakhstan), the Serbian vaccine, and the Russian vaccine respectively were 69%, 43%, and 22% effective with respect to clinical TB notifications, and 92%, 82%, and 51% effective with respect to culture confirmed TB. All three vaccines were >70% effective with respect to TB meningitis.Potential limitations included considerations that 1) the methodology used was retrospective, 2) multiple risk factors could have varied between cohorts and affected prevention effectiveness measures, 3) most cases were clinically diagnosed, and TB culture-positive case numbers and TB meningitis case numbers were sparse, and 4) small variations in reported population TB burden could have affected relative risk of exposure for cohorts.All three BCG vaccines evaluated were protective against TB, and prevention effectiveness varied by manufacturer. When setting national immunization policy, consideration should be given to prevention effectiveness of BCG preparations

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Phenotyping progenies for complex architectural traits: a strategy for 1-year-old apple trees (Malus x domestica Borkh.)

    Get PDF
    International audienceThe aim of this study was to define a methodology for describing architectural traits in a quantitative way on tree descendants. Our strategy was to collect traits related to both tree structural organization, resulting from growth and branching, and tree form and then to select among these traits relevant descriptors on the basis of their genetic parameters. Because the complexity of tree architecture increases with tree age, we chose to describe the trees in the early stages of development. The study was carried out on a 1-year-old apple progeny derived from two parent cultivars with contrasted architecture. A large number of variables were collected at different positions and scales within the trees. Broad-sense heritability and genetic correlations were estimated and the within tree variability was analyzed for variables measured on long sylleptic axillary shoots (LSAS). These results were combined to select heritable and not correlated variables. Finally, the selection of variables proposed combines topological with geometric traits measured on both trunks and LSAS: (1) on the trunk, mean internode length, and number of sylleptic axillary shoots; (2) on axillary shoots, conicity, bending, and number of sylleptic axillary shoots born at order 3. The trees of the progeny were partitioned on the basis of these variables. The putative agronomic interest of the selected variables with respect to the subsequent tree development is discussed

    The impact of childhood vaccines on bacterial carriage in the nasopharynx: a longitudinal study.

    Get PDF
    BACKGROUND: There is increasing evidence that childhood vaccines have effects that extend beyond their target disease. The objective of this study was to assess the effects of routine childhood vaccines on bacterial carriage in the nasopharynx. METHODS: A cohort of children from rural Gambia was recruited at birth and followed up for one year. Nasopharyngeal swabs were taken immediately after birth, every two weeks for the first six months and then every other month. The presence of bacteria in the nasopharynx (Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus) was compared before and after the administration of DTP-Hib-HepB and measles-yellow fever vaccines. RESULTS: A total of 1,779 nasopharyngeal swabs were collected from 136 children for whom vaccination data were available. The prevalence of bacterial carriage was high: 82.2% S. pneumoniae, 30.6%, S.aureus, 27.8% H. influenzae. Carriage of H. influenzae (OR = 0.36; 95% CI: 0.13, 0.99) and S. pneumoniae (OR = 0.25; 95% CI: 0.07, 0.90) were significantly reduced after measles-yellow fever vaccination; while DTP-Hib-HepB had no effect on bacterial carriage. CONCLUSIONS: Nasopharyngeal bacterial carriage is unaffected by DTP-Hib-HepB vaccination and reduced after measles-yellow fever vaccination
    • …
    corecore