123 research outputs found

    Tarnished Plant Bugs in Cotton (Research Information Sheet #101)

    Get PDF
    This publication describes tarnished plant bugs and includes information on damage, biology, varietal susceptibility, monitoring, insecticide resistance and efficacy.https://digitalcommons.lsu.edu/agcenter_researchinfosheets/1010/thumbnail.jp

    Kaposi's sarcoma with a non-Hodgkin's lymphoma. Its association in a male homosexual with human T-cell lymphotropic virus type III infection

    Get PDF
    Combined tumor syndromes, specifically reticuloendothelial malignancies and Kaposi’s sarcoma, have long been recognized. With the recognition of the acquired immunodeficiency syndrome (AIDS), several patients with concurrent non-Hodgkin’s lymphoma and Kaposi’s sarcoma have been reported at high risk for developing AIDS. The present Centers for Disease Control definition of AIDS excludes these patients on the assumption that one tumor is affecting the cellular immunity, allowing for the development of the second malignancy. In evaluating such a patient who had serologic evidence of human T-cell lymphotropic virus type III infection, the probable cause of AIDS, we have reviewed reports of patients with similar concurrent malignancies before and since the onset of the AIDS epidemic. We conclude that patients in high-risk groups for AIDS who develop similar combined tumor syndromes should be classified as having AIDS

    Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.

    Get PDF
    Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host

    Analytical protocols for separation and electron microscopy of nanoparticles interacting with bacterial cells

    Get PDF
    An important step toward understanding interactions between nanoparticles (NPs) and bacteria is the ability to directly observe NPs interacting with bacterial cells. NPbacteria mixtures typical in nanomedicine, however, are not yet amendable for direct imaging in solution. Instead, evidence of NPcell interactions must be preserved in derivative (usually dried) samples to be subsequently revealed in high-resolution images, e.g., via scanning electron microscopy (SEM). Here, this concept is realized for a mixed suspension of model NPs and Staphylococcus aureus bacteria. First, protocols for analyzing the relative colloidal stabilities of NPs and bacteria are developed and validated based on systematic centrifugation and comparison of colony forming unit (CFU) counting and optical density (OD) measurements. Rate-dependence of centrifugation efficiency for each component suggests differential sedimentation at a specific predicted rate as an effective method for removing free NPs after co-incubation; the remaining fraction comprises bacteria with any associated NPs and can be examined, e.g., by SEM, for evidence of NPbacteria interactions. These analytical protocols, validated by systematic control experiments and high-resolution SEM imaging, should be generally applicable for investigating NPbacteria interactions.financial support from the following sources: grant SFRH/BPD/47693/2008 from the Portuguese Foundation for Science and Technology (FCT); FCT Strategic Project PEst-OE/EQB/LA0023/2013; project “BioHealth Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027, cofunded by the Programa Operacional Regional do Norte (ON.2−O Novo Norte), QREN, FEDER; project “Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB”, ref. FCOMP-01-0124-FEDER- 027462

    Effect of pre-milking teat preparation procedures on the microbial count on teats prior to cluster application

    Get PDF
    A study was carried out to investigate the effect of six pre-milking teat preparation procedures on lowering the staphylococal, streptococcal and coliform microbial count on teat skin prior to cluster application. The teat preparations included 'Iodine', 'Chlorhexidine' teat foam, 'Washing and drying' with paper, 'No preparation', 'Chlorine' teat foam, and disinfectant 'Wipes'. Teat preparations were applied for five days to 10 cows for each treatment during two herd management periods (indoors and outdoors). Teats were swabbed on day four and five before teat preparation and repeated after teat preparation. The swabs were plated on three selective agars: Baird Parker (Staphylococcus spp.), Edwards (Streptococcus spp.), and MacConkey (coliform). Following incubation, microbial counts for each pathogen type were manually counted and assigned to one of six categories depending on the microbial counts measured. The results were analysed by logistic regression using SAS [28]. The main analysis was conducted on binary improvement scores for the swabbing outcomes. There were no differences for staphylococcal, streptococcal and coliform bacterial counts between treatments, measured 'before' teat preparation. Treatments containing 'Chlorhexidine' teat foam (OR = 4.46) and 'Wipes' (OR = 4.46) resulted in a significant reduction (P < 0.01) in the staphylococcal count on teats compared to 'Washing and drying' or 'No preparation'. 'Chlorine' teat foam (OR = 3.45) and 'Wipes' (3.45) had the highest probability (P < 0.01) of reducing streptococcal counts compared to 'Washing and drying' or 'No preparation'. There was no statistical difference between any of the disinfectant treatments applied in reducing coliforms. Thus, the use of some disinfectant products for pre-milking teat preparation can have beneficial effects on reducing the levels of staphylococcal and streptococcal pathogens on teat skin

    Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius

    Get PDF
    Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multistep resistance selection analysis revealed compounds 4 and 5 exhibited a modest (twofold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents

    Daptomycin antimicrobial activity tested against methicillin-resistant staphylococci and vancomycin-resistant enterococci isolated in European medical centers (2005)

    Get PDF
    BACKGROUND: Daptomycin is a cyclic lipopeptide with potent activity and broad spectrum against Gram-positive bacteria currently used for the treatment of complicated skin and skin structure infections and bacteremia, including right sided endocarditis. We evaluated the in vitro activity of this compound and selected comparator agents tested against clinical strains of staphylococci and enterococci collected in European medical centers in 2005. METHODS: A total of 4,640 strains from 23 medical centers located in 10 European countries, Turkey and Israel (SENTRY Program platform) were tested for susceptibility by reference broth microdilution methods according to Clinical and Laboratory Standards Institute guidelines and interpretative criteria. Mueller-Hinton broth was supplemented to 50 mg/L Ca(++ )for testing daptomycin. Results for oxacillin (methicillin)-resistant staphylococci and vancomycin-resistant enterococci were analyzed separately. RESULTS: Oxacillin resistance rates among Staphylococcus aureus varied from 2.1% in Sweden to 42.5% in the United Kingdom (UK) and 54.7% in Ireland (29.1% overall), while vancomycin resistance rates varied from 0.0% in France, Sweden and Switzerland to 66.7% in the UK and 71.4% in Ireland among Enterococcus faecium (17.9% overall). All S. aureus strains were inhibited at daptomycin MIC of 1 mg/L (MIC(50/90), 0.25/0.5 mg/L; 100.0% susceptible) and only one coagulase-negative staphylococci strain (0.1%) showed an elevated (>1 mg/L) daptomycin MIC value (4 mg/L). Among E. faecalis (MIC(50/90), 0.5/1 mg/L; 100% susceptible) the highest daptomycin MIC value was 2 mg/L; while among E. faecium (MIC(50/90), 2/4 mg/L; 100% susceptible) the highest MIC result was 4 mg/L. CONCLUSION: Daptomycin showed excellent in vitro activity against staphylococci and enterococci collected in European medical centers in 2005 and resistance to oxacillin, vancomycin or quinupristin/dalfopristin did not compromise its activity overall against these pathogens. Based on these results and those of previous publications, daptomycin appears to be an excellent therapeutic option for serious infections caused by oxacillin-resistant staphylococci and vancomycin-resistant enterococci in Europe

    The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model

    Get PDF
    There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 10(8) CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 10(8) to 10(9) CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates
    corecore