194 research outputs found

    Extreme Active Molecular Jets in L1448C

    Full text link
    The protostellar jet driven by L1448C was observed in the SiO J=8-7 and CO J=3-2 lines and 350 GHz dust continuum at ~1" resolution with the Submillimeter Array (SMA). A narrow jet from the northern source L1448C(N) was observed in the SiO and the high-velocity CO. The jet consists of a chain of emission knots with an inter-knot spacing of ~2" (500 AU) and a semi-periodic velocity variation. The innermost pair of knots, which are significant in the SiO map but barely seen in the CO, are located at ~1" (250 AU) from the central source, L1448C(N). Since the dynamical time scale for the innermost pair is only ~10 yr, SiO may have been formed in the protostellar wind through the gas-phase reaction, or been formed on the dust grain and directly released into the gas phase by means of shocks. It is found that the jet is extremely active with a mechanical luminosity of ~7 L_sun, which is comparable to the bolometric luminosity of the central source (7.5 L_sun). The mass accretion rate onto the protostar derived from the mass-loss rate is ~10^{-5} M_sun/yr. Such a high mass accretion rate suggests that the mass and the age of the central star are 0.03-0.09 M_sun and (4-12)x10^3 yr, respectively, implying that the central star is in the very early stage of protostellar evolution. The low-velocity CO emission delineates two V-shaped shells with a common apex at L1448C(N). The kinematics of these shells are reproduced by the model of a wide opening angle wind. The co-existence of the highly-collimated jets and the wide-opening angle shells can be explained by the unified X-wind model" in which highly-collimated jet components correspond to the on-axis density enhancement of the wide-opening angle wind. The CO JJ=3--2 map also revealed the second outflow driven by the southern source L1448C(S) located at ~8.3" (2000 AU) from L1448C(N).Comment: 45 pages, 13 figures, Accepted for the publication in the Astrophysical Journa

    ROBIS: A new tool to assess risk of bias in systematic reviews was developed

    Get PDF
    AbstractObjectiveTo develop ROBIS, a new tool for assessing the risk of bias in systematic reviews (rather than in primary studies).Study Design and SettingWe used four-stage approach to develop ROBIS: define the scope, review the evidence base, hold a face-to-face meeting, and refine the tool through piloting.ResultsROBIS is currently aimed at four broad categories of reviews mainly within health care settings: interventions, diagnosis, prognosis, and etiology. The target audience of ROBIS is primarily guideline developers, authors of overviews of systematic reviews (“reviews of reviews”), and review authors who might want to assess or avoid risk of bias in their reviews. The tool is completed in three phases: (1) assess relevance (optional), (2) identify concerns with the review process, and (3) judge risk of bias. Phase 2 covers four domains through which bias may be introduced into a systematic review: study eligibility criteria; identification and selection of studies; data collection and study appraisal; and synthesis and findings. Phase 3 assesses the overall risk of bias in the interpretation of review findings and whether this considered limitations identified in any of the phase 2 domains. Signaling questions are included to help judge concerns with the review process (phase 2) and the overall risk of bias in the review (phase 3); these questions flag aspects of review design related to the potential for bias and aim to help assessors judge risk of bias in the review process, results, and conclusions.ConclusionsROBIS is the first rigorously developed tool designed specifically to assess the risk of bias in systematic reviews

    Why do we need a theory and metrics of technology upgrading?

    Get PDF
    This paper discusses why we need theory and metrics of technology upgrading. It critically reviews the existing approaches to technology upgrading and motivates build-up of theoretically relevant but empirically grounded middle level conceptual and statistical framework which could illuminate a type of challenges relevant for economies at different income levels. It conceptualizes technology upgrading as three dimensional processes composed of intensity and different types of technology upgrading through various types of innovation and technology activities; broadening of technology upgrading through different forms of technology and knowledge diversification, and interaction with global economy through knowledge import, adoption and exchange. We consider this to be necessary first step towards theory and metrics of technology upgrading and generation of more relevant composite indicator of technology upgrading

    Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process

    Get PDF
    The barrier function of mitochondrial membranes is perturbed early during the apoptotic process. Here we show that the mitochondria contain a caspase-like enzymatic activity cleaving the caspase substrate Z-VAD.afc, in addition to three biological activities previously suggested to participate in the apoptotic process: (a) cytochrome c; (b) an apoptosis-inducing factor (AIF) which causes isolated nuclei to undergo apoptosis in vitro; and (c) a DNAse activity. All of these factors, which are biochemically distinct, are released upon opening of the permeability transition (PT) pore in a coordinate, Bcl-2–inhibitable fashion. Caspase inhibitors fully neutralize the Z-VAD.afc–cleaving activity, have a limited effect on the AIF activity, and have no effect at all on the DNase activities. Purification of proteins reacting with the biotinylated caspase substrate Z-VAD, immunodetection, and immunodepletion experiments reveal the presence of procaspase-2 and -9 in mitochondria. Upon induction of PT pore opening, these procaspases are released from purified mitochondria and become activated. Similarly, upon induction of apoptosis, both procaspases redistribute from the mitochondrion to the cytosol and are processed to generate enzymatically active caspases. This redistribution is inhibited by Bcl-2. Recombinant caspase-2 and -9 suffice to provoke full-blown apoptosis upon microinjection into cells. Altogether, these data suggest that caspase-2 and -9 zymogens are essentially localized in mitochondria and that the disruption of the outer mitochondrial membrane occurring early during apoptosis may be critical for their subcellular redistribution and activation

    Identification of yrast states in 187Pb

    Get PDF
    g -ray spectroscopy of the high-spin states of the neutron-deficient nucleus 187Pb has been conducted with the 155Gd(36Ar,4n) reaction. A cascade of three transitions was deduced from g -g coincidence data gated by detection of recoiling evaporation residues in a gas-filled recoil separator. In an earlier, separate experiment, two of these g rays were positively identified with 187Pb by recoil-g coincidence measurements with a high-resolution, recoil mass spectrometer. From comparison with similar sequences in heavier odd-A lead isotopes, the cascade in 187Pb is associated with the sequence of three E2 transitions from the yrast 25/2 + level to a low-lying 13/2 + isomer. The variation of excitation energy with mass number of the levels concerned suggests that their structure can be associated with weak coupling of an odd i13/2 neutron to states in the spherical well. However, the possibility that they are influenced by mixing with states in the prolate-deformed well cannot be discounted

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore