353 research outputs found

    Energy Momentum Tensor and Marginal Deformations in Open String Field Theory

    Get PDF
    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a codimension one D-brane.Comment: LaTeX file, 25 pages; v2: minor addition

    Protective Efficacy of Individual CD8+ T Cell Specificities in Chronic Viral Infection.

    Get PDF
    Specific CD8(+) T cells (CTLs) play an important role in resolving protracted infection with hepatitis B and C virus in humans and lymphocytic choriomeningitis virus (LCMV) in mice. The contribution of individual CTL specificities to chronic virus control, as well as epitope-specific patterns in timing and persistence of antiviral selection pressure, remain, however, incompletely defined. To monitor and characterize the antiviral efficacy of individual CTL specificities throughout the course of chronic infection, we coinoculated mice with a mixture of wild-type LCMV and genetically engineered CTL epitope-deficient mutant virus. A quantitative longitudinal assessment of viral competition revealed that mice continuously exerted CTL selection pressure on the persisting virus population. The timing of selection pressure characterized individual epitope specificities, and its magnitude varied considerably between individual mice. This longitudinal assessment of "antiviral efficacy" provides a novel parameter to characterize CTL responses in chronic viral infection. It demonstrates remarkable perseverance of all antiviral CTL specificities studied, thus raising hope for therapeutic vaccination in the treatment of persistent viral diseases

    Time Evolution in Superstring Field Theory on non-BPS brane.I. Rolling Tachyon and Energy-Momentum Conservation

    Full text link
    We derive equations of motion for the tachyon field living on an unstable non-BPS D-brane in the level truncated open cubic superstring field theory in the first non-trivial approximation. We construct a special time dependent solution to this equation which describes the rolling tachyon. It starts from the perturbative vacuum and approaches one of stable vacua in infinite time. We investigate conserved energy functional and show that its different parts dominate in different stages of the evolution. We show that the pressure for this solution has its minimum at zero time and goes to minus energy at infinite time.Comment: 16 pages, 5 figures; minor correction

    Matrix Model and Time-like Linear Dilaton Matter

    Full text link
    We consider a matrix model description of the 2d string theory whose matter part is given by a time-like linear dilaton CFT. This is equivalent to the c=1 matrix model with a deformed, but very simple fermi surface. Indeed, after a Lorentz transformation, the corresponding 2d spacetime is a conventional linear dilaton background with a time-dependent tachyon field. We show that the tree level scattering amplitudes in the matrix model perfectly agree with those computed in the world-sheet theory. The classical trajectories of fermions correspond to the decaying D-branes in the time-like linear dilaton CFT. We also discuss the ground ring structure. Furthermore, we study the properties of the time-like Liouville theory by applying this matrix model description. We find that its ground ring structure is very similar to that of the minimal string.Comment: 30 pages, harvmac, typos corrected, acknowledgements and comments added(v2), published version (v3

    Measurement of the Ξ<sup>-</sup><sub>b</sub> and Ω<sup>-</sup><sub>b</sub> baryon lifetimes

    Get PDF
    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb13~ \rm fb^{-1}, the Ξb\Xi_b^- and Ωb\Omega_b^- baryons are reconstructed in the ΞbJ/ψΞ\Xi_b^- \rightarrow J/\psi \Xi^- and ΩbJ/ψΩ\Omega_b^- \rightarrow J/\psi \Omega^- decay modes and their lifetimes measured to be \tau (\Xi_b^-) = 1.55\, ^{+0.10}_{-0.09}~{\rm(stat)} \pm 0.03\,{\rm(syst)} ps, \tau (\Omega_b^-) = 1.54\, ^{+0.26}_{-0.21}~{\rm(stat)} \pm 0.05\,{\rm(syst)} ps. These are the most precise determinations to date. Both measurements are in good agreement with previous experimental results and with theoretical predictions

    First observation and amplitude analysis of the B−→D+K−π− decay

    Get PDF
    The B−→D+K−π− decay is observed in a data sample corresponding to 3.0  fb−1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B−→D+K−π−)=(7.31±0.19±0.22±0.39)×10−5 where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B−→D+π−π−, respectively. An amplitude analysis of the resonant structure of the B−→D+K−π− decay is used to measure the contributions from quasi-two-body B−→D∗0(2400)0K−, B−→D∗2(2460)0K−, and B−→D∗J(2760)0K− decays, as well as from nonresonant sources. The D∗J(2760)0 resonance is determined to have spin 1

    First observation and amplitude analysis of the B- -> D+K-pi(-) decay

    Get PDF
    The B-→D+K-π- decay is observed in a data sample corresponding to 3.0 fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B-→D+K-π-)=(7.31±0.19±0.22±0.39)×10-5 where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B-→D+π-π-, respectively. An amplitude analysis of the resonant structure of the B-→D+K-π- decay is used to measure the contributions from quasi-two-body B-→D0∗(2400)0K-, B-→D2∗(2460)0K-, and B-→DJ∗(2760)0K- decays, as well as from nonresonant sources. The DJ∗(2760)0 resonance is determined to have spin 1
    corecore