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1. Introduction

Most problems in engineering end up with solving a set of multi-dimensional partial
differential equations (PDEs) by using modelling techniques. For potential problems, the
Poisson type differential equation is to be solved either analytically or numerically. Due to the
high performance of computers, the numerical approximations can usually provide a high
degree of accuracy together with a reliable bound on the error with the analytical solution.
There are many numerical techniques to deal with differential equations including the semi-
analytical solutions, the finite difference method, finite element method and boundary element
method in [1-6]. In the last decade, high performance of interpolation by using the radial basis
functions and Lagrange series interpolation have been drawing a great attention of researchers,
see Golberg et. al. [7], Hardy [8] and Hon et. al. [9]. Recently the meshless approaches in the
numerical engineering including the Diffuse Element Method (DEM), Element-Free Galerkin
(EFG), Finite Point Method, Meshless Local Petrov-Galerkin (MLPG) and Point Interpolation
Method (PIM) [10-14] etc have received much interest since Nayroles et. al. [15] proposed the
diffuse element method. The scaled boundary finite element method has been developed in [16]
which was extended to solve problems in diffusion [17], dynamic fluid-structure interaction [18]
and acoustics [19]. Stress intensity factors are evaluated in [20] for cracks with the crack
surfaces subjected to arbitrarily distributed tractions. The finite integration method and finite
block method developed by Wen et. al. [21,22] and Li et. al. [23] were applied to engineering
problems including fracture mechanics, heat conductivity, nonlinear contact static and dynamic
problems. It shows that the FIM provide much higher accuracy degree than the finite difference

method and the point collocation method.

In this paper, the Finite Line Integration Method is proposed to deal with multi-dimensional
partial differential equations. Firstly, the real domain is mapped into a square domain first and
the partial differential equation is derived in the normalized domain. The Lagrange series
interpolation is applied to D -1 coordinate axis for multi-dimensions (D is the dimension
number). Then the partial differential equation is reduced to a set of ordinary differential
equations. Two numerical approaches are employed to solve the ordinary differential equation,
i.e. the finite difference approach and finite integration approach. To demonstrate the accuracy
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and efficiency of the DIM, two-dimensional problems are observed and the numerical results
are compared with analytical solutions.
2. Coordinate transform and mapping differential matrix

2.1. Two dimensional problem
For a two dimensional problem, suppose that the domain shown in Figure 1(a) is mapped

into a square domain by using the following shape functions for the geometry [24]

M, =5 @+ GO+ &S +nm-1) for i-1234.

M, =Z(-&)t+n) for i=57, M)
M, =%(1—772)(1+ £&) for i=68,

where (&,,7,) indicates seed coordinate in regular domain. The different order of partial
differentials of shape function with respect to axes & and 7 are presented in the Appendix. The

coordinate in a real domain is interpolated as

8 8
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Figure 1. Regular domain and its seeds: (a) two dimension; (b) three dimension.

Consider a Poisson equation for two-dimensional problems
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ou o

WWLW:b(X' y) (Xy)eQ, (7
where b(x,y) is source term in the domain and Q. The equation above in the normalised
transformed domain becomes

o°u ou ou o°u ou

—+A—+B—+C +D—=Eb(&,n), 8
et R o TBe, sy TP T EE ®)
where
oa oo oa oo
A= (all 851 +ay, o 21 8521 + 0y le/(alzl + 05221)’
B=|a, Oa, +ay, Oa, + 02 + 02 / (alzl + azzl), 9)
0¢ on 0s on

2 2
C= 2(05110512 + 0‘22“21)/(“11 + aZl)’

D= (0{122 +al, )/(afl + azzl), E= 1/(6{121 + azzl).
The first and second order partial differentials of coefficients «; with respect to axes & and r

are given in the Appendix.

2.2. Dimension reduction (2D)

For two dimensional problems, suppose that the real domain shown in Figure 1(a) has four

edges associated with & =41, 7 =41. The boundary conditions can be written in general form
as

du

fi (S0, m0)U + 9 (55 770) an

=W, (&) 1=1234  (&.7m,) €0Q, (10)

in which f;, g, and w, are given functions on the boundary 0Q, i indicates the numbers of edge

and n is the outward normal to the boundary. From the coordinate transform, one has(

du du du . . ou : ou
— =—cosa +—sina = (o, COSa + a,, Sinar)— + (e, COS & + v, SIN X )— . (11)
dn dx dy o0& on

In the mapped domain, the potential function can be interpolated by using Lagrange series

along a straight line cd in Figure 1(a) as follows
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W) = ZH =1 |, ()= sz)u@) (12)

Nl kL Ty =Tk
k=

where N_(77) is also called as the shape function with Lagrange series interpolation along line

cd and the collocations of distributed nodes are selected either uniformly as
2(k-1)

k=12,.,N+1, (13)

T =
or non-uniformly distribution such as Chebyshev's roots
M =—cos$,k=1,2,...,N+1. (14)

It is very clear that the selection of collocation with Chebyshev's roots gives a much stable and
accurate solution in general cases [24]. Then the first order and second order derivatives with

respect to coordinate 7 are obtained easily as

2—;=ZN‘[H(77. ) li H(n m}u(f) idl\(;"(]”)ui(f) (15)
and
o Z[H(m W'y > l0- nk}U(é) > u®. (16)

Substituting (15) and (16) into (10) gives

N

Carnll gy My (g, c M BE), o3 ERD ) e, an

If we consider a straight line 7 =, shown in Figure 1(a) in the domain, the partial differential

equation becomes an ordinary differential equation as

d’u, ., du, < dN () o dN; (77,) dU(f) S m
d§2+Ad(§+B§ i ui(§)+c§ i Zl: u; (&) = Eb(,7,)

k=2,..,N-1, (18)
where N+1 is the number of collocation point in total along the 7 axis. Apparently, the
problem with the partial differential equation is changed to solve an ordinary differential
equation with a set of the distribution function u,(&). Similar to the scaled boundary finite

element method [16], this approach aims to simply transfer a partial differential equation to an

ordinary differential equation and is therefore defined as the direct integration method. It is

-6 -
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expected to be easier and more accurate to deal with an ordinary differential equation than a

partial differential equation.

2.3. Dimension reduction (3D)
This dimension reduction method can be easily extended to a three dimensional problem. In
three-dimensional cases, the real domain is associated with six surfaces, i.e. £=41,

n =+1, ¢ =+1 with the following boundary conditions

fi(é:ov%vgo)u+gi(gov%vgo)d_u:Wi(§0’770’§0) 1=1234,56, (& 7:6,)€Q, (19)

dn

in which f,,g,andw, are specified on the boundary 0Q as shown in Figure 1(b). In the

mapped domain, similarly to two-dimensional problems, the potential function can be

interpolated by using Lagrange series, along line ef in Figure 2(b), as follows

WE) = ZH = ”k) ZH“ ) 4@ = 33N () L) (), (20)

n=1 k=1 1=1 1—1 j) i=1 =1

where N, (77) and L,(g) are shape functions along » and ¢ axis respectively. In the same way
for 2D problems, the first order and second order derivatives with respect to coordinate » and
¢ can be obtained easily by Lagrange interpolation. Therefore, a three-dimension partial

differential equation can be transformed to a set of the ordinary differential equation.

3. Semi-analytical and direct integration algorithm

In order to investigate the degree of accuracy, the semi-analytical analysis is presented in
this section. Consider a Laplace differential equation with regular domain |x| <1, |y| <1

o’u  du

PRy

ox~ oy
In this case, x=¢&, y=n, A=B=C=0and D=E =1. By Lagrange series interpolation and

-0. (21)

considering a straight line y =y, shown in Figure 2(a), the partial differential equation is

simplified to the ordinary differential equation as follow
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dzuk 3d’N A (V)
+ u (x)=0, , k=2,...N. 22
dX2 ; dy ( ) y yk ( )

Suppose on the top and bottom u=0wheny==1, i.e. u(x)=uy,(x)=0and the general

solution of the potential can be written as

u.(x)=pe* k=2..,N, (23)

N+1

Nk

() (b)

Figure 2. Ends for each integration line:  oboundary nodes; e domain nodes: (a) two

dimension; (b) three dimension.

where g, are coefficients. Substituting (23) into (22) gives

B+ ﬁ: N(W B.=0 k=2,..N. (24)

n=2

Then, the general solution of Eq.(22) can be written as
\T N Ay X . Ay X
u(x):(uz,u3,...,uN) :Zﬂke ‘ Vk"'zlgk Vi, (25)
k=2 k=2

where 4, and v, =1{V,,,V,,,.... V. | represent the eigenvalues and associated eigenvectors of

the following equations in matrix form

(K-Al)v=0, (26)
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2
where Kkn:—dLgyk) and 1 is (N—-1)x(N 1) diagonal unite matrix, S and g are

coefficients to be determined by boundary conditions at the ends of each line shown in Figure
2(a)(b), i.e. when x=+1 andy=y, in (22). In the same way, for three-dimensional cases

shown in Figure 2(b), the Laplace equation is

dZU-(X) N+1d N L+1d2
n=1
k=2,..N, j=2,...L. (27)

Suppose u=0 when y=0,1and z=0,1, and the general solution of the ordinary differential

equation above can be written as
ukj(g):ﬂkje“, k=2,..,N, j=2,..,L, (28)

where f,; is coefficients. Substituting (28) into (27) yields

L d?N
g+ 3N g 0 5 L3 (Z AN o 0, k=2 N, =2, L. (29)
n=2 I=2

It is a set of ordinary differential equations and their general solutions can be obtained as
N L X N L ke
u(x) = Zzlgkje "V +ZZ e Vg, (30)

where 4;and v,; represent an eigenvalues and eigen vectors of equation (29). Noticeably, the
dimension of the matrix in (29) is (N —1)x(L—1) as shown in Figure 2(b). The coefficients
B, and ﬁ_’kj are to be determined by 2(N —1)x (L —1) boundary conditions at x=-1 and 1

when y =y, and z=z;in (19).

Example 1. For illustration, we first consider the following boundary conditions
u=0 for y=0,1
u=sinzy for x=0 and u=e"sinzy for x=1.
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The analytical solution is given u” =e™sinzy. The average error & between the numerical

solution u and the analytical solution u” is defined as
1 &

E=—
N, 2

where N, is the number of testing points in the domain. The eigenvalues and average errors are

Ui — ui* | (31)

presented in Table 1 for the different number of the integral line N along the y axis. It indicates
that the average error is around 107" . Figure 3 shows the numerical and analytical solutions
u(x,1/2) along the x axis with the different number of integral line (end). The average relative

error are 11.3.% while N =2 and 0.28% while N =4.

Table 1. Eigenvalues and relative errors versus the number of collocation point N.

N | & | & | & | = | = | & | JA ;
4 3.1343 6.9282 8.8417 — — — - 5.7145E-04
6 3.1416 6.2860 9.1289 16.0982 17.2856 —-— - 2.5100E-06
8

3.1416 6.2833 9.4203 12.7320 14.8290 28.3975 29.2829 | 1.8713E-08

25

_._.D_._. N:2
—--0--- N=4

20

—— Analytical solution

u(x)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Distribution of temperature along y =0.5 with the different number of the line.

-10 -
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Example 2. Consider the following boundary conditions [25]
u=100, y=0 (botom)and u=500, y=Db (top),
u=100, x=0 and x=a (sides),

where a and b are chosen as one unit. From the ordinary differential equation, one has

d uk id N (yk u (X):—dZNl(yk)T _dZNN+1(yk)
2

dy? side T, = b, (constant)

n=2

k=2,...,N. (32)
As b, are constants for each line, a particular solution u’ in (32) must be constant which can be

determined from (32)

Ku® =b, (33)
2
in which K, = % Then, the solution of Eq.(32) can be written, in vector form, as
y
N-1 N-1
u(x) = Zﬂkeﬁka + Zﬂke’ﬁka +u’. (34)
k=2 k=2
The analytical solution can be obtained [12]
. nny
. oAT —T. = (1t sinh —=
u(x,y) = (“’p S'dE)Z( D™+l n D2 n?zb + T, - (35)
4 a  sinh——
a
The relative average error ¢ is defined as
1 & ]
g:N—Z‘ui—uiMui‘. (36)

¢ 1=

The average relative errors are presented in Table 2 versus the number of uniformly distributed
node N along the y axis. Excellent accuracy and convergence with semi-analytical solution can
be seen from this table.

Table 2. Average relative errors.

N &
2 5.4343E-02
4 5.4811E-03
6 1.0135E-03
8 2.4065E-04
10 6.7325E-05

-11 -
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Example 3. Consider three dimensional Laplace equation in the domain Q of [01]° with
following boundary conditions

u=0 for y=0, 1,

u=0, for z=0, 1,

eV2r

u=sinzysinzz for x=0and u= sinzysinzz for x=1.

Jamx

The analytical solution is u” =e'**sinzysinzz . The relative average error & between the

analytical solution u and the computed solution u” is defined in (36), where N_is the number
of nodes in total (N —1)(L —1) as shown in Figure 2(b). The eigenvalues and relative average
errors are presented in Table 3 and Table 4 respectively versus the different number of
collocations N along the y axis and L along the z-axis. Finite lines are collocated in the plane
yoz (no¢) along the x-axis and shown in Figure 4 when N =8 and L =6. To avoid the double
roots of the eigenvalue, the numbers N and L should be selected as different values. Same again,

very accurate solutions can be obtained even with few integral lines.

Z A

sle} Q o o ] o o
>0 o] o] o] o] o] o
[e o] O (o] o] (o] o (o]

I_z o o o o o 0{}1 y
o O O '

Figure 4. Distribution of the ends of integral lines in the plane of yoz for a three-

@)

dimensional problem.

-12 -
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Table 3. Eigenvalues with different nodes distributions.

R e F f F F Ve A A A
(2,1) 4.320 6.325 — - — - — _ —
(3,2) 4.527 6.467 7.659 8.944 9.426 10.496 — — — — _ _
(4,3) 4.437 6.944 7.607 9.295 9.383 10.797 11.591 13.032 13.135 14.238 14.422 15.433

Table 4. Average errors with node densities.

N L &

2 3. 0008E-01
3 2 1. 2701E-01
4 3 6. 5856E-03
5 4 1. 6051E-03
6 5 7. 3520E-05
7 6 1. 2231E-05
8 7 3. 4916E-07

4. Numerical strategies for the ordinary differential equation

In order to solve an ordinary differential equation with variable coefficients A, B, C, D and
E in (18), a numerical approach should be considered.

4.1 Finite different method
The finite difference method is the simplest method among the numerical approaches.

Consider the approximations [26]

dU u(|+l) u(i—1) d 2u u(i+l) _ 2u(i) + u(i—l)

: ~ 37

d§ 2A d&? N (37)

Substituting (37) into (18) yields for a straight line ab (7 =7, ) shown in Figure 1(a)

u(i+l)_2u(i)_|_u(i—1) u(|+1) u(|—l) N+1dN :

A ) B )Y, T U+
N+1 dN u(I+1) u(I—l) N+1 d N ,

Ol M), o) s DG ), S Ul = Ene, )

k=2,..,N,i=2,..,M. (38)

Considering boundary conditions in (10), we can determine all nodal values u{" ,

k=12,...N+1 i=12,..,L+1 by solving linear algebraic equations from (38).

-13 -
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4.2 Finite line integration method

By introducing the Direct Interation Method, the different order integral matrix H® and

H® can be evaluated by the use of the Lagrange interpolation [22]. The procedure is very

simple as follows. Any function f (£) is approximated by Lagrange series, in a different form,
as

M+1

f(&)=>a,e™",  -1<&<1, (39)

M +1

where the coefficient {a,, |~ are defined by

3 512 §1M & f,

L& & - &) & _| T or Aa=f (40)

1 Sun Gwa - Gwal\@a) (fua
Then, one has

a=A"f. (41)
Therefore, one has single and double layers integrations

LB = [ F - e, 2)

M1
gmt ~1<E£<1. (43)

)

If M +1 collocation points are selected either uniformly or non-uniformly in (13) and (14), the

indefinite integrals can be arranged in matrix form, in terms of the nodal values, as

u® = HOf ' uUu® =H®f . (44)
The dimension of H® and H® are (M +1)x (M +1) matrices respectively. Consider a line
n =n, shown in Figure 2(a), integrating over both sides of equation (18) gives

du, dA .. {dN ( ) L (m dC(<)
E+Auk_Id§ Z;‘ 7 jBu (§)d§+z [ un(é:)_jwundé:}

-14 -
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L3N (1) (”k)jDu dé = [Eb(&n,)dé +c,

n=1

(45)
Taking integration again over the equation above, one has

uk(§)+IAukd§—”3(§ dede s ZdN (nk)”B d§d§+Nz+ldN (1)

N+

UCun(g)df—”d(;—if)undfdé} Z

)”D“ dédé = [ [ Eb(,m)ddé +c & +d,

kK=2,...N (46)
By introducing integral matrix, (12) and (13) can be written in a matrix form
N+1 N+1
%+ U, — H(l)Ayguk +Z dN,, (77,) H‘”Bun n z dN, (72,) y
a§ n=1 d’] n=1 d77 k — 2 N (47)
-
cu, -HOC u |+ d ': (1) pyopy, - HOED, +¢,
n= 77
and
N+1
u, +H%, —HPA u, +sz (1) oy +Z ("k
vy g k=2,..N,  (48)
[HOCu, -HPC u, |+ Z—': 1) pepy, - HOED, + 2 +d,i
n=1 n
where u, = {u,, /" is the vector of potential for k-th curve, & =(&,&,,....&y.,)" » @ unit vector

i={L1..,1]" and diagonal matrices

0A(&)

oC(&)

Py 0 0 0 Y 0 0 0
A O —8/2(69:2) o0 ¢ 0 ac;(;g 0 0 (49)

Combined with the boundary conditions on four surfaces in (10), the nodal values of u, and

the integral constants (c,,d, ) associated with each integral line can be obtained.

Example 4. Consider a two dimensional Laplace equation in the domain as shown in Figure 3.

Boundary conditions are specified as

-15 -
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u=0 y=0 (bottom)and y=(1+x*)/2 (top)
q=ny(y—-1/2) x=0 (left-hand side)[
u=0 x=1 (right-hand side)[’

As a flux density is given on the left-hand side, i.e. £=¢& , where n =-1,n =0. The

coordinate transformation gives

a(m)=— =—CQy Q-

du du du ou au
=—n,+—n
dn  dx dy ’ o0& on

(50)

ki 1
m=1 af " n=1 877 "
The analytical solution is assumed as

M+18Mm N+18Nn
_ _0‘112 (&) u _0‘122 (m.) u

u = y(y —(1+ xz)/2)sin X
with the body force term consequently

b(x,y)=[2-y—7y(y — L+ x*)/ 2]sin 7zx — 271Xy COS 7X .
The mapping of the boundary and collocation points distribution are shown in Figure 5. The
joints of the two axes i.e.(&,,n,), m=12,...,M +Ln=12,...,N +1, are locations of collocation
point both in the physical domain and mapped domain, where M =N =5. To observe the
degree of accuracy of DIM proposed in this paper, the average errors of the temperature of the
nodal value located in the domain both by FDM and DIM are shown in Table 4. The average
errors of temperature are about 1% for FDM and 2% for DIM if N = 3.However, the degree of
accuracy is improved significantly for DIM with a larger number of nodes. It has been observed
that the numerical solution becomes unstable and divergence while M >15N >15. It is

because the interpolation with Lagrange series in (39) becomes unstable. Table 4 shows that

the degree of accuracy with DIM is much higher than that with FDM when N > 4.

Table 4. Average errors for various node numbers

(N=L) FDM DIM
3 9. 9765E-03 2. 1762E-02
4 3. 14326-03 3. 2138E-03
5 1. 5730E-03 1. 2489E-04
6 9. 1827E-04 1. 7402E-04
7 6. 0000E-04 3. 1564E-05

-16 -
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8 4. 1803E-04 1. 4186E-06
9 3. 0992E-04 1. 0529E-06
10 2. 3833E-04 1. 2859E-07
11 1. 8871E-04 1. 5401E-08
n
' 3 (1,1) |
4 7 3
/ C T , o : : ’)
(0.5,0.625) I
g BRI
(0,0.5) rd P st ——6 ¢
40— | ) o e s
86— — a P U(S) b
— I 1 1
X o
O \9,
1 5 2 1 5 2
@ (b)

Figure 5. A two-dimensional nozzle: (a) real domain with finite lines; (b) transformed domain.

5. Time dependence problem
In the dynamic engineering, all physical values are time dependent. Apart from the
dimension of geometry, time is a new extra dimension. Consider the two-dimensional wave

equation as following

ou du 1o au
5 @ Y Tyt X,y)eQ, t>0,
o oy ot (xy.1) (X, y)eQ, t>
ou(x,y,0
%:VO(X, y), u(xy,0)=uy(xy) (xy)eQ, t=0, (51)

u(x,y,t)=g(x,y,t) (x,y) eoQ, t >0,

where u is generally referred to as the transversal displacement of a membrane in mechanical

engineering, f is body force, c is the propagation velocity, « the damping factor. In addition,

v, and u, are given initial displacement and velocity in the domain, and g the boundary value.

Applying the Laplace transformation on equation (51) gives

-17 -
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20 2~ -
Z—+gy—l:—s(ciz+ajﬁz f(x, y,s)+Ci2[su0+v0]+ozu0 (x,y)eQ,
u(x,y,8)=9g(xy,s), (xy)eoQ,

where s denotes the Laplace transform parameter. By using DIM, one has system equation in

(52)

matrix form (51)

N N
U, + HYG, —HPA G, + ZM HOBG, + ZMX[H OCh, —HOC |

dn - dzy (53)

N ~
Z (”k —SH@DE, - ( > +ajH(Z)EGk =H®Eb, +c&+d,i,
C

i=1

where all variables with are transformed functions in the Laplace space, E(X, y,S) =
f(x, y,8)+[su, +V,]/c*+au, . All nodal values of the displacement can be obtained
numerically in the Laplace space for each specified parameters, . Consider (K+1) samples in
the transformation domins, , k =01,...,K, the transformed variables u(x,y,s,) are evaluated

both by the FDM and the DIM. Finally, the inversion proposed by Durbin [27] is adopted and it

gives

Zea)t/T

u(t) = [——u(a)/T)+ZRe{ (w!T +2k7zi/T)e2"’ﬁ”T}] (54)

where u(s,) denotes the transformed variable in the Laplace domain while the parameter of the

Laplace transform is chosen as s, = (w+2kzi)/T (i =+/—1). In the Durbin Laplace transform

reverse method, there are two free parameters: w and T. The selection of parameters T depends
on the observing period in the time domain [28].

Consider a rectangular membrane under initial displacement over the entire domain as
shown in Figure 1(0<x<a,0<y<Db). The initial displacement and velocity conditions are
specified as [29]

u,(x,y,0) =16Ux(a—-x)y(b—y)/a’*0* v,(x,y,0)=0,
where U is maximum displacement at the centre of the plate. Considering the boundary
condition for a simply supported plate, the general solution can be represented in the series

form as

Ms

mn

3 F (t)sm—sm ;zy m,n=123..., (55)
=1

3
Il
UN

n
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where
F..(t) = Be” + Be™, (56)
in which g, (i =1,2) are two roots of the following equation

Br+ctap+ A2, =0, (57)

where 4 =czy/m?/a’+n’/b’ . Then we have

—Ctat+qcta® 42,
Bio= : (58)

2

The coefficients B, and B, in (56) are determined by the initial conditions. For example, if the

initial conditions are given by

ou(x,y,0
u(x,y,0) =u,(x,y), %:0. (59)
Substituting (10) into (13) yields
Bl+BZZan’ ﬁlBl+ﬂ282:0’ (60)
where
4 3 _(max) . (nzy
B =—/11u,(X,y)sin| — |sin| —= |dydx 61
- ab-u‘)(y)(aj(bjy (61)
and therefore, the function
2 Bt aht
an(t):_ /1mn |:e _e :|an' (62)
\/C4a2—4lﬁm ﬁl ﬂz
If A >c’al2,the function F_ (t) can be simplified as
2,—c2at /2 it/ 2
() == 228 m{ e }B (63)
- -Ca+im,,

where @, =42, —c'a® . If 1, <c’al2,the function F,, (t) takes

2
2/12e—c at/2 ewmntIZ e—wmnt/Z
B .

an (t) == (64)

2 2
O, -Ca+w,, -Ca-a,

For the Durbin’s inversion method of Laplace transform, two free parameters are selected as

=5 and T =40 . The number of the sample point in the Laplace transform space K =100.

The dimension of a rectangular membrane a =b =1. The numerical solutions of the normalized

-19 -



Dimension reduction analysis with mapping and direct integration algorithm Jin, Zheng and Wen

displacement u/U at the central point of the plate (a/2,a/2) are shown in Figure 6 (a)(b) when

the damping factor « is taken as 0 and 0.5 respectively. It has been noticed that at the very

beginning of time, i.e. t=0, there is a jump and the exact solution for the membrane
displacement u should be u(0) =[u(0")-u(07)]/2=0.5. Figures 6(a)(b) shows the difference

between the numerical solutions with FDM/DIM and analytical solution when N =L =6 .
Clearly, the direct integration method is of higher accuracy than the finite difference method.
The more accurate solution can be obtained using more lines (N) and collocation points (M) on
each integration line. In addition, the free parameters have very small effect on the

computational accuracy of the results.

15

— Analytical

1.0 -
05 A

0.0

u/U

-05

-1.0 S

-1.5

15

1.0 -

05 A

u/U

0.0

=

-05 -

-1.0 A

(b)

-1.5

Figure 6. Normalised displacement u/U versus the normalised time ct/a: (a) without damping
(a =0); (b) with damping (« =0.5).
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6. Conclusion

A dimensional reduction method, the direct integration method, was proposed to solve the
multi-dimensional partial differential equations numerically. By the mapping technique and
Lagrange series interpolation, the general partial differential equation in the physical domain
was transformed to a set of the ordinary differential equation in the normalized domain. A set
of ordinary differential equations was solved by DIM proposed in this paper numerically with
an excellent degree of accuracy when compared with the finite difference method. In DIM, the
different orders of integration matrices were obtained easily with Lagrange series both for two
and three-dimensional problems. Dynamic problems were studied in the Laplace transform
domain and it has been shown that the DIM is an accurate algorithm. Although the simple case
with one domain is considered in this paper, the DIM can be developed to the more
complicated problem with smooth irregular domains such as amoeba-shape domain and large
systems. In this case, subregion technique should be introduced. The proposed DIM can be
extended to solve more complicated problems in engineering such as elasticity, elastoplasticity

linear/nonlinear and fracture problems.
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Appendix
Firstly the first order partial differential of shape function with respect to normalized axes
& and 7 are
oM. & oM. n. :
WS nm@zcenm Do coyce v fori=1234  (A)
o0& 4 on 4
—Lt==£(1+nn), —="1- for i=57 A2
Py S@A+mm) on , 1=<) (A2)
oM, & 2y OM. :
—L=2(1-p%), —=-n+¢ for i=6,8 A3
e 2 d-7) on n+&¢s) (A3)
and their second order partial differential with respect to normalized axes £ and 7 are
O°M, &7 O°M,  &n, o°M, 7’ :
L3 (14+n7), L=t (28E+2nn+1),—L=-"1(1+&¢) for i=1,234 (Ad
o7 5 L+ 1) oeon 4 (258 +2nm +1) o , 1+&¢8) (Ad)
2 2 2
M ), M- e OMi g foris7 (A5)
o& oéon on
2 2 2
OMi 0, OMi_ e OMi_ 1h2e) fori=6s8 (A6)
o5 ocon on

In (45) and (46), we need following high order partial differentials

2 2 2
oo Oay Oy Oty O°ax

o2 o ' oF o o MITH (A7)
where

_B Y O, X, OX _

aij_ J 1 ﬁ11_6777ﬂ12_ 6§’ﬂ21_ 677’ﬂ22_6é:’ ‘]_ﬂllﬂZZ ﬂZlﬂlZ' (A8)
Then

Oay 1,0 ,03) Oay _1( 0 ,0)

ag_JZ(J o0& ﬂ”ag}’ an_JZ(J on ﬂ”an} (A9)

Fay 1| 20h ,y08a 0 (A

o8 J{J o2 2 or o ige TP "(ag”’ (AL0)
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o 023 oB. o8. 2
%i 1 Jzi_\]ﬁa_‘]_\]ﬁa_‘]_\]ﬂija_‘]uﬁ’ija_‘]a_‘] .
oéon o¢ oOn on o0& o&on o¢ on

It is not difficult to obtain the first order partial differential of 0A/0& and 6C /o< . In addition,

o&on  J° (A1)

the partial differential of coordinate in j;

X &M, . oy &M,
oc & o& T e éﬁf ‘
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