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Abstract 

Based on the Lagrange series interpolation, the semi-analytical and direct integration 

method (DIM) for solving the multi-dimensional partial differential equations are presented in 

this paper. A multidimensional problem can be simplified to a set of the ordinary differential 

equation by the mapping technique and Lagrange series interpolation (dimension reduction). 

The semi-analytical and numerical solutions by DIM are derived for the partial differential 

equation with variable coefficients. Comparisons with analytical solutions are performed in 

order to demonstrate the accuracy and efficiency of the proposed method.   
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1. Introduction 

 Most problems in engineering end up with solving a set of multi-dimensional partial 

differential equations (PDEs) by using modelling techniques. For potential problems, the 

Poisson type differential equation is to be solved either analytically or numerically. Due to the 

high performance of computers, the numerical approximations can usually provide a high 

degree of accuracy together with a reliable bound on the error with the analytical solution. 

There are many numerical techniques to deal with differential equations including the semi-

analytical solutions, the finite difference method, finite element method and boundary element 

method in [1-6]. In the last decade, high performance of interpolation by using the radial basis 

functions and Lagrange series interpolation have been drawing a great attention of researchers, 

see Golberg et. al. [7], Hardy [8] and Hon et. al. [9]. Recently the meshless approaches in the 

numerical engineering including the Diffuse Element Method (DEM), Element-Free Galerkin 

(EFG), Finite Point Method, Meshless Local Petrov-Galerkin (MLPG) and Point Interpolation 

Method (PIM) [10-14] etc have received much interest since Nayroles et. al. [15] proposed the 

diffuse element method. The scaled boundary finite element method has been developed in [16] 

which was extended to solve problems in diffusion [17], dynamic fluid-structure interaction [18] 

and acoustics [19]. Stress intensity factors are evaluated in [20] for cracks with the crack 

surfaces subjected to arbitrarily distributed tractions. The finite integration method and finite 

block method developed by Wen et. al. [21,22] and Li et. al. [23] were applied to engineering 

problems including fracture mechanics, heat conductivity, nonlinear contact static and dynamic 

problems. It shows that the FIM provide much higher accuracy degree than the finite difference 

method and the point collocation method.  

 In this paper, the Finite Line Integration Method is proposed to deal with multi-dimensional 

partial differential equations. Firstly, the real domain is mapped into a square domain first and 

the partial differential equation is derived in the normalized domain. The Lagrange series 

interpolation is applied to 1−D  coordinate axis for multi-dimensions (D is the dimension 

number). Then the partial differential equation is reduced to a set of ordinary differential 

equations. Two numerical approaches are employed to solve the ordinary differential equation, 

i.e. the finite difference approach and finite integration approach. To demonstrate the accuracy 
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and efficiency of the DIM, two-dimensional problems are observed and the numerical results 

are compared with analytical solutions. 

2. Coordinate transform and mapping differential matrix 

2.1. Two dimensional problem 

For a two dimensional problem, suppose that the domain shown in Figure 1(a) is mapped 

into a square domain by using the following shape functions for the geometry [24] 
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2
1 2 =+−= iM ii ξξη , 

where ),( ii ηξ  indicates seed coordinate in regular domain. The different order of partial 

differentials of shape function with respect to axes ξ  and η  are presented in the Appendix. The 

coordinate in a real domain is interpolated as 
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  Figure 1. Regular domain and its seeds: (a) two dimension; (b) three dimension. 
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where ),( yxb  is source term in the domain and Ω. The equation above in the normalised 

transformed domain becomes 
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The first and second order partial differentials of coefficients ijα with respect to axes ξ  and η  

are given in the Appendix. 

2.2. Dimension reduction (2D) 

 For two dimensional problems, suppose that the real domain shown in Figure 1(a) has four 

edges associated with 1  ,1 ±=±= ηξ . The boundary conditions can be written in general form 

as 

 4,3,2,1   ),(),(),( 000000 ==+ iw
dn
duguf iii ηξηξηξ     Ω∂∈),( 00 ηξ ,          (10) 

in which iii wgf  and ,  are given functions on the boundary Ω∂ , i indicates the numbers of edge 

and n is the outward normal to the boundary. From the coordinate transform, one has
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 In the mapped domain, the potential function can be interpolated by using Lagrange series 

along a straight line cd in Figure 1(a) as follows 
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where )(ηnN  is also called as the shape function with Lagrange series interpolation along line 

cd and the collocations of distributed nodes are selected either uniformly as 
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It is very clear that the selection of collocation with Chebyshev's roots gives a much stable and 

accurate solution in general cases [24]. Then the first order and second order derivatives with 

respect to coordinate η  are obtained easily as 
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Substituting (15) and (16) into (10) gives  
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If we consider a straight line kηη = shown in Figure 1(a) in the domain, the partial differential 

equation becomes an ordinary differential equation as 
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                  1,....,2 −= Nk ,  (18) 

where N+1 is the number of collocation point in total along the η  axis. Apparently, the 

problem with the partial differential equation is changed to solve an ordinary differential 

equation with a set of the distribution function )(ξiu . Similar to the scaled boundary finite 

element method [16], this approach aims to simply transfer a partial differential equation to an 

ordinary differential equation and is therefore defined as the direct integration method. It is 
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expected to be easier and more accurate to deal with an ordinary differential equation than a 

partial differential equation.  

2.3. Dimension reduction (3D) 

 This dimension reduction method can be easily extended to a three dimensional problem. In 

three-dimensional cases, the real domain is associated with six surfaces, i.e. 1±=ξ , 

1  ,1 ±=±= ςη  with the following boundary conditions 

 6,54,3,2,1   ),,(),,(),,( 000000000 ，==+ iw
dn
duguf iii ςηξςηξςηξ ,   Ω∂∈),,( 000 ςηξ ,  (19) 

in which iii wgf  and ,  are specified on the boundary Ω∂  as shown in Figure 1(b). In the 

mapped domain, similarly to two-dimensional problems, the potential function can be 

interpolated by using Lagrange series, along line ef  in Figure 2(b), as follows 
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where )(ηnN  and )(ςlL  are shape functions along η  and ς  axis respectively. In the same way 

for 2D problems, the first order and second order derivatives with respect to coordinate η  and 

ς  can be obtained easily by Lagrange interpolation. Therefore, a three-dimension partial 

differential equation can be transformed to a set of the ordinary differential equation.  

3. Semi-analytical and direct integration algorithm 

 In order to investigate the degree of accuracy, the semi-analytical analysis is presented in 

this section. Consider a Laplace differential equation with regular domain 1  ,1 ≤≤ yx  
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In this case, ξ=x , η=y , 0=== CBA  and 1== ED . By Lagrange series interpolation and 

considering a straight line kyy = shown in Figure 2(a), the partial differential equation is 

simplified to the ordinary differential equation as follow 
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Suppose on the top and bottom 0=u when 1±=y , i.e. 0)()( 11 == + xuxu N and the general 

solution of the potential can be written as 
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  Figure 2. Ends for each integration line:      boundary nodes;    domain nodes: (a) two 

dimension; (b) three dimension. 
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where 2

2 )(
dy

yNdK kn
kn −=  and I is )1()1( −×− NN  diagonal unite matrix, iβ  and iβ  are 

coefficients to be determined by boundary conditions at the ends of each line shown in Figure 

2(a)(b), i.e. when 1±=x  and kyy =  in (22). In the same way, for three-dimensional cases 

shown in Figure 2(b), the Laplace equation is 
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Suppose 0=u  when 1 ,0=y  and 1 ,0=z , and the general solution of the ordinary differential 

equation above can be written as 
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It is a set of ordinary differential equations and their general solutions can be obtained as 
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where kjλ and kjv  represent an eigenvalues and eigen vectors of equation (29). Noticeably, the 

dimension of the matrix in (29) is )1()1( −×− LN  as shown in Figure 2(b). The coefficients 

kjβ  and kjβ  are to be determined by )1()1(2 −×− LN  boundary conditions at 1−=x  and 1 

when kyy =  and jzz = in (19). 

Example 1. For illustration, we first consider the following boundary conditions 

 .1for     sin   and   0for      sin
,1 ,0for       0

====

==

xyeuxyu
yu

ππ π  
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The analytical solution is given yeu x ππ sin* = . The average error ε  between the numerical 

solution u and the analytical solution *u  is defined as 

∑
=

−=
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ε

ε
N

i
ii uu

N 1

*1 ,                  (31) 

where εN  is the number of testing points in the domain. The eigenvalues and average errors are 

presented in Table 1 for the different number of the integral line N along the y axis. It indicates 

that the average error is around N−10 . Figure 3 shows the numerical and analytical solutions 

)2/1,(xu  along the x axis with the different number of integral line (end). The average relative 

error are 11.3.% while 2=N  and 0.28% while 4=N .  

Table 1. Eigenvalues and relative errors versus the number of collocation point N. 

N  1λ  
2λ  3λ  

4λ  5λ  
6λ  

7λ  ε  

4  3.1343 6.9282 8.8417 -- -- -- -- 5.7145E-04 
6  3.1416 6.2860 9.1289 16.0982 17.2856 -- -- 2.5100E-06 
8  3.1416 6.2833 9.4203 12.7320 14.8290 28.3975 29.2829 1.8713E-08 

      

                  

 Figure 3. Distribution of temperature along 5.0=y  with the different number of the line.  
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Analytical solution 
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Example 2. Consider the following boundary conditions [25] 

 ,(sides)    and  0   ,100
),top(    ,500  and (botom)  0   ,100

axxu
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where a and b are chosen as one unit. From the ordinary differential equation, one has 
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As kb are constants for each line, a particular solution p
ku in (32) must be constant which can be 

determined from (32) 
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The analytical solution can be obtained [12]  

 
( )

side
n

n
sidetop T

a
bn

a
yn

a
xn

n
TT

yxu +×
+−−

= ∑
∞

=

+

π

π
π

π sinh

sinh
sin1)1(2

),(
1

1
* .        (35) 

The relative average error ε  is defined as 
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The average relative errors are presented in Table 2 versus the number of uniformly distributed 

node N along the y axis. Excellent accuracy and convergence with semi-analytical solution can 

be seen from this table. 

         Table 2. Average relative errors. 

N ε  
2 5.4343E-02 
4 5.4811E-03 
6 1.0135E-03 
8 2.4065E-04 
10 6.7325E-05 
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Example 3. Consider three dimensional Laplace equation in the domain Ω of [ ]3 1,0
 
with 

following boundary conditions 

 
.1for     sinsin   and  0for      sinsin

,1  ,0for      ,0
,1  ,0for       0

2 ====

==
==

xzyeuxzyu

zu
yu

ππππ π

 

The analytical solution is zyeu x πππ sinsin2* = . The relative average error ε  between the 

analytical solution u and the computed solution *u  is defined in (36), where εN is the number 

of nodes in total )1)(1( −− LN  as shown in Figure 2(b). The eigenvalues and relative average 

errors are presented in Table 3 and Table 4 respectively versus the different number of 

collocations N along the y axis and L along the z-axis. Finite lines are collocated in the plane 

yoz )( ςηo  along the x-axis and shown in Figure 4 when 8=N  and 6=L . To avoid the double 

roots of the eigenvalue, the numbers N and L should be selected as different values. Same again, 

very accurate solutions can be obtained even with few integral lines. 

 

 

 

                                      

 Figure 4. Distribution of the ends of integral lines in the plane of yoz for a three-

dimensional problem. 

 

y 

z 

O 
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Table 3. Eigenvalues with different nodes distributions. 

(N,L) 1λ  
2λ  3λ  

4λ  5λ  
6λ  

7λ  
8λ  

9λ  
10λ  

11λ  
12λ  

(2,1) 4.320 6.325 -- -- -- -- -- -- -- -- -- -- 

(3,2) 4.527 6.467 7.659 8.944 9.426 10.496 -- -- -- -- -- -- 

(4,3) 4.437 6.944 7.607 9.295 9.383 10.797 11.591 13.032 13.135 14.238 14.422 15.433 

 

 

Table 4. Average errors with node densities.  

N L ε  

2 1 3.0008E-01 

3 2 1.2701E-01 

4 3 6.5856E-03 

5 4 1.6051E-03 

6 5 7.3520E-05 

7 6 1.2231E-05 

8 7 3.4916E-07 

 

4. Numerical strategies for the ordinary differential equation
 

 In order to solve an ordinary differential equation with variable coefficients A, B, C, D and 

E in (18), a numerical approach should be considered.  

4.1 Finite different method 

 The finite difference method is the simplest method among the numerical approaches. 

Consider the approximations [26] 

 2

)1()()1(

2

2)1()1( 2  ,
2 ∆
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≈
−+−+ iiiii uuu

d
uduu

d
du

ξξ
.            (37) 

Substituting (37) into (18) yields for a straight line ab ( kηη = ) shown in Figure 1(a) 

),( )(),(
2

 )(),(

 )(),(
2

),(2

)(
1

1
2

2)1()1(1

1

)(
1

1

)1()1(

2

)1()()1(

ki
i

n

N

n

kn
ki

i
n

i
n

N

n

kn
ki

i
n

N

n

kn
ki

i
k

i
k

ki

i
k

i
k

i
k

Ebu
d
NdDuu

d
dNC

u
d

dNBuuAuuu

ηξ
η
ηηξ

η
ηηξ

η
ηηξηξ

=+
∆
−

++
∆
−

+
∆

+−

∑∑

∑
+

=

−++

=

+

=

−+−+

       

                MiNk ,...,2,,...,2 == .  (38) 

Considering boundary conditions in (10), we can determine all nodal values )(i
ku , 

1,...,2,1  ;1,...,2,1 +=+= LiNk  by solving linear algebraic equations from (38). 
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4.2 Finite line integration method 

 By introducing the Direct Interation Method, the different order integral matrix )1(H  and 
)2(H  can be evaluated by the use of the Lagrange interpolation [22]. The procedure is very 

simple as follows. Any function )(ξf  is approximated by Lagrange series, in a different form, 

as 

∑
+

=

− ≤≤−=
1

1

1 11          ,)(
M

m

m
maf ξξξ ,               (39) 

where the coefficient { } 1
1
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M
mkma  are defined by 
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 or  fAa = .        (40) 

Then, one has  

 fAa 1−= .                      (41) 

Therefore, one has single and double layers integrations  

 ∑∫
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M

m

mm

mm
addfU ξξξξξξ .                  (43) 

If 1+M  collocation points are selected either uniformly or non-uniformly in (13) and (14), the 

indefinite integrals can be arranged in matrix form, in terms of the nodal values, as 

 fHU )1()1( = , fHU )2()2( = .                 (44) 

The dimension of )1(H  and )2(H are )1()1( +×+ MM  matrices respectively. Consider a line 

kηη = shown in Figure 2(a), integrating over both sides of equation (18) gives 
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kkn
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kn cdEbdDu
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       Nk ,....,2= .   (45) 

Taking integration again over the equation above, one has 
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By introducing integral matrix, (12) and (13) can be written in a matrix form 
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and 
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  Nk ,....,2= ,  (48) 

where { } 1
1
+
== M

mkmk uu  is the vector of potential for k-th curve, T
M ),...,,( 121 += ξξξξ , a unit vector 

{ }T1,...,1,1=i  and diagonal matrices 

 

























∂
∂

∂
∂

∂
∂

=

+

ξ
ξ

ξ
ξ

ξ
ξ

ξ

)(000
........

00)(0

000)(

1

2

1

,

MA

A

A

A , 

























∂
∂

∂
∂

∂
∂

=

+

ξ
ξ

ξ
ξ

ξ
ξ

ξ

)(000
........

00)(0

000)(

1

2

1

,

MC

C

C

C . (49) 

  Combined with the boundary conditions on four surfaces in (10), the nodal values of ku and 

the integral constants ),( kk dc associated with each integral line can be obtained.  

 

Example 4. Consider a two dimensional Laplace equation in the domain as shown in Figure 3. 

Boundary conditions are specified as  
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0     0 == yu  (bottom) and  2/)1( 2xy +=  (top)  

 
0   )2/1( =−= xyyq π  (left-hand side)
 

 
1    0 == xu  (right-hand side)
 

As a flux density is given on the left-hand side, i.e. 1ξξ = , where 0 ,1 =−= yx nn . The 

coordinate transformation gives 
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           (50) 

The analytical solution is assumed as 

 ( ) xxyyu πsin2/)1( 2* +−=   

with the body force term consequently 

 xxyxxyyyyxb ππππ cos2sin]2/)1((2[),( 22 −+−−−= . 

The mapping of the boundary and collocation points distribution are shown in Figure 5. The 

joints of the two axes i.e. ),( nm ηξ , 1,...,2,1;1,...,2,1 +=+= NnMm , are locations of collocation 

point both in the physical domain and mapped domain, where 5== NM . To observe the 

degree of accuracy of DIM proposed in this paper, the average errors of the temperature of the 

nodal value located in the domain both by FDM and DIM are shown in Table 4. The average 

errors of temperature are about 1% for FDM and 2% for DIM if 3=N .However, the degree of 

accuracy is improved significantly for DIM with a larger number of nodes. It has been observed 

that the numerical solution becomes unstable and divergence while 15,15 ≥≥ NM . It is 

because the interpolation with Lagrange series in (39) becomes unstable.  Table 4 shows that 

the degree of accuracy with DIM is much higher than that with FDM when 4>N . 

 

      Table 4. Average errors for various node numbers 

)( LN =  FDM DIM 

3 9.9765E-03 2.1762E-02 

4 3.1432E-03 3.2138E-03 

5 1.5730E-03 1.2489E-04 

6 9.1827E-04 1.7402E-04 

7 6.0000E-04 3.1564E-05 
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8 4.1803E-04 1.4186E-06 

9 3.0992E-04 1.0529E-06 

10 2.3833E-04 1.2859E-07 

11 1.8871E-04 1.5401E-08 

 

 

 

 

 

 

 

 

 

 

 

      (a)                (b) 

Figure 5. A two-dimensional nozzle: (a) real domain with finite lines; (b) transformed domain. 

 

5. Time dependence problem 
 In the dynamic engineering, all physical values are time dependent. Apart from the 

dimension of geometry, time is a new extra dimension. Consider the two-dimensional wave 

equation as following 
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       (51) 

where u is generally referred to as the transversal displacement of a membrane in mechanical 

engineering, f is body force, c is the propagation velocity, α  the damping factor. In addition, 

 0v and  0u are given initial displacement and velocity in the domain, and g the boundary value. 

Applying the Laplace transformation on equation (51) gives 
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where s denotes the Laplace transform parameter. By using DIM, one has system equation in 

matrix form (51) 
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where all variables with "~" are transformed functions in the Laplace space, =),,(~ syxb  

0
2

00 /][),,(~ ucvsusyxf α+++ . All nodal values of the displacement can be obtained 

numerically in the Laplace space for each specified parameter ks . Consider (K+1) samples in 

the transformation domin Kksk ,...,1,0 , = , the transformed variables ),,(~
ksyxu  are evaluated 

both by the FDM and the DIM. Finally, the inversion proposed by Durbin [27] is adopted and it 

gives 

( ){ }
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12)( π

ω

πωω ,                 (54) 

where )(~
ksu  denotes the transformed variable in the Laplace domain while the parameter of the 

Laplace transform is chosen as Tiksk /)2( πω += )1( −=i . In the Durbin Laplace transform 

reverse method, there are two free parameters: ω  and T. The selection of parameters T depends 

on the observing period in the time domain [28].  

 Consider a rectangular membrane under initial displacement over the entire domain as 

shown in Figure 1 )0 ,0( byax ≤≤≤≤ . The initial displacement and velocity conditions are 

specified as [29] 

 0)0,,(     ;/)()(16)0,,( 0
22

0 =−−= yxvbaybyxaUxyxu ,           

where U is maximum displacement at the centre of the plate. Considering the boundary 

condition for a simply supported plate, the general solution can be represented in the series 

form as 

  ...3,2,1,     ,sinsin)(
1 1

== ∑∑
∞

=

∞

=

nm
b

yn
a

xmtFu
m n

mn
ππ  ,          (55) 
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where  

 tt
mn eBeBtF 21

21)( ββ += ,                  (56) 

in which )2,1( =iiβ  are two roots of the following equation 

 0222 =++ mnc λαββ ,                  (57) 

where 2222 // bnamcmn += πλ . Then we have 

 
2

4 2242

2,1
mncc λαα

β
−±−

= .                (58) 

The coefficients 21  and BB in (56) are determined by the initial conditions. For example, if the 

initial conditions are given by 

 0)0,,(    ),,()0,,( 0 =
∂

∂
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t
yxuyxuyxu .             (59) 

Substituting (10) into (13) yields 

 0     , 221121 =+=+ BBBBB mn ββ ,              (60) 
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and therefore, the function 
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If 2/2αλ cmn > , the function )(tFmn  can be simplified as 
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where 2424 αλω cmnmn −= . If 2/2αλ cmn ≤ , the function )(tFmn  takes 
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For the Durbin’s inversion method of Laplace transform, two free parameters are selected as  

5=ω  and 40=T . The number of the sample point in the Laplace transform space 100=K . 

The dimension of a rectangular membrane 1== ba . The numerical solutions of the normalized 
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displacement u/U at the central point of the plate )2/,2/( aa  are shown in Figure 6 (a)(b) when 

the damping factor α  is taken as 0 and 0.5 respectively. It has been noticed that at the very 

beginning of time, i.e. 0=t , there is a jump and the exact solution for the membrane 

displacement u should be 5.02/)]0()0([)0( =−= −+ uuu . Figures 6(a)(b) shows the difference 

between the numerical solutions with FDM/DIM and analytical solution when 6== LN . 

Clearly, the direct integration method is of higher accuracy than the finite difference method. 

The more accurate solution can be obtained using more lines (N) and collocation points (M) on 

each integration line. In addition, the free parameters have very small effect on the 

computational accuracy of the results.  

      

      
Figure 6. Normalised displacement u/U versus the normalised time ct/a: (a) without damping 

)0( =α ; (b) with damping )5.0( =α . 
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FDM DIM Analytical 
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6. Conclusion 
 A dimensional reduction method, the direct integration method, was proposed to solve the 

multi-dimensional partial differential equations numerically. By the mapping technique and 

Lagrange series interpolation, the general partial differential equation in the physical domain 

was transformed to a set of the ordinary differential equation in the normalized domain. A set 

of ordinary differential equations was solved by DIM proposed in this paper numerically with 

an excellent degree of accuracy when compared with the finite difference method. In DIM, the 

different orders of integration matrices were obtained easily with Lagrange series both for two 

and three-dimensional problems. Dynamic problems were studied in the Laplace transform 

domain and it has been shown that the DIM is an accurate algorithm. Although the simple case 

with one domain is considered in this paper, the DIM can be developed to the more 

complicated problem with smooth irregular domains such as amoeba-shape domain and large 

systems. In this case, subregion technique should be introduced. The proposed DIM can be 

extended to solve more complicated problems in engineering such as elasticity, elastoplasticity 

linear/nonlinear and fracture problems.  
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Appendix 

Firstly the first order partial differential of shape function with respect to normalized axes 

ξ  and η  are 
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and their second order partial differential with respect to normalized axes ξ  and η  are 
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In (45) and (46), we need following high order partial differentials 
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It is not difficult to obtain the first order partial differential of ξ∂∂ /A and ξ∂∂ /C . In addition, 

the partial differential of coordinate in ijβ  
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