98 research outputs found

    Colletotrichum species with curved conidia from herbaceous hosts

    Get PDF
    Colletotrichum (Glomerellaceae, Sordariomycetes) species with dark setae and curved conidia are known as anthracnose pathogens of a number of economically important hosts and are often identified as C. dematium. Colletotrichum dematium has been synonymised with many species, including the type of the genus, C. lineola. Since there is no living strain of the original material of either species available, we re-collected C. lineola from the original location to serve as an epitype of that name, and chose an appropriate epitype specimen and associated strain of C. dematium from the CBS collection. A multilocus molecular phylogenetic analysis (ITS, ACT, Tub2, CHS-1, GAPDH, HIS3) of 97 isolates of C. lineola, C. dematium and other Colletotrichum species with curved conidia from herbaceous hosts resulted in 20 clades, with 12 clades containing strains that had previously been identified as C. dematium. The epitype strains of C. lineola and C. dematium reside in two closely related clades. Other clades represent four previously undescribed species, C. anthrisci, C. liriopes, C. rusci and C. verruculosum, isolated respectively from Anthriscus in the Netherlands, Liriope in Mexico, Ruscus in Italy and Crotalaria in Zimbabwe. The new combinations C. spaethianum and C. tofieldiae are made. Colletotrichum truncatum is epitypified, as well as C. circinans, C. curcumae and C. fructi. Three further unidentified Colletotrichum taxa were detected in the phylogenetic analysis, which may require description after further research. Each species is comprehensively described and illustrate

    The Colletotrichum acutatum species complex

    Get PDF
    AbstractColletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum.Taxonomic novelties:New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C. orchidophilum Damm, P.F. Cannon & Crous, C. paxtonii Damm, P.F. Cannon & Crous, C. pseudoacutatum Damm, P.F. Cannon & Crous C. pyricola Damm, P.F. Cannon & Crous, C. rhombiforme Damm, P.F. Cannon & Crous, C. scovillei Damm, P.F. Cannon & Crous, C. sloanei Damm, P.F. Cannon & Crous, C. tamarilloi Damm, P.F. Cannon & Crous, C. walleri Damm, P.F. Cannon & Crous. Typifications: Epitypifications - C. acutatum J.H. Simmonds, C. limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. nymphaeae (Pass.) Aa, C. phormii (Henn.) D.F. Farr & Rossman, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. Lectotypifications - C. nymphaeae (Pass.) Aa, C. orchidearum Allesch

    Characterization of Colletotrichum species associated with diseases of Proteaceae

    Get PDF
    Colletotrichum spp. are known to occur on and cause diseases of Proteaceae, but their identities are confused and poorly understood. The aim of the present study thus was to identify accurately the Colletotrichum spp. associated with diseases of cultivated Proteaceae. Colletotrichum spp. associated with proteaceous hosts growing in various parts of the world were identified based on morphology, sequence data of the internal transcribed spacer region (ITS-1, ITS-2), the 5.8S gene, and partial sequences of the ß-tubulin gene. Four species of Colletotrichum were found to be associated with Proteaceae. Colletotrichum gloeosporioides, a cosmopolitan species known to occur on numerous hosts, was isolated from Protea cynaroides cultivated in South Africa and Zimbabwe, and from a Leucospermum sp. in Portugal. A recently described species, C. boninense was associated with Zimbabwean and Australian Proteaceae but also occurred on a Eucalyptus sp. in South Africa. This represents a major geographical and host extension for the species and a description of the African strains is provided. Colletotrichum crassipes was represented by a single isolate obtained from a Dryandra plant in Madeira. Colletotrichum acutatum was isolated from Protea and Leucadendron in South Africa as well as from other hosts occurring elsewhere. A pathologically distinct population of this species was found to occur on Hakea in South Africa. This population is described as C. acutatum f. sp. hakeae, and its relationship with other strains of C. acutatum is discussed. Contrary to earlier literature reports linking C. gloeosporioides to anthracnose of Proteaceae, the present study has shown that several distinct species of Colletotrichum are associated with different diseases of this crop, which has serious implications for quarantine and disease control practice

    The Colletotrichum boninense species complex

    Get PDF
    Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture

    Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro Imaging genetics through meta analysis (ENIGMA) Consortium

    Get PDF
    BACKGROUND: The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS: The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS: Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS: The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia

    Observational and genetic associations between cardiorespiratory fitness and cancer: a UK Biobank and international consortia study

    Get PDF
    Background The association of fitness with cancer risk is not clear. Methods We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method. Results After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min−1⋅kg−1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73–0.89), colorectal (0.94, 0.90–0.99), and breast cancer (0.96, 0.92–0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min−1⋅kg−1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86–0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated. Discussion Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
    corecore