112 research outputs found

    Noninvasive assessment of endothelial function in the skin microcirculation

    Get PDF
    BACKGROUND: The structure and function of blood vessels varies along the vascular tree. Endothelial dysfunction is a hallmark of increased cardiovascular (CV) risk that can be assessed by several methods, some of which are invasive and of restricted application. The aim of this study was to determine whether the laser Doppler response of skin microcirculation to acetylcholine, reflects that of conduit artery assessed by brachial artery flow-mediated dilation (FMD). METHODS: Noninvasive measurement of endothelium-dependent vasodilation in the skin microcirculation by laser Doppler flowmetry (LDF) in response to a local transdermal iontophoretic application of acetylcholine (Ach-SkBF) is an operator-independent method. Ach-SkBF and FMD were measured in the nondominant upper limb of 55 unselected consecutive patients admitted in our department for evaluation of CV risk factors. RESULTS: Ach-SkBF was (mean +/- s.d. (min-max)) 490 +/- 414%, (10-1667%) and FMD was 3.77 +/- 3.01% (0.91-10.91). A strong linear relationship was found between Ach-SkBF and FMD: Ach-SkBF = 122.7 FMD + 25.8 (r = 0.92, P < 0.0001). CONCLUSIONS: Endothelial dilatory response to increased blood flow and to acetylcholine are similar in large arteries and in the skin microvasculature. Thus, measurement of blood flow changes in the skin microcirculation using LDF coupled with acetylcholine iontophoresis represents a technically challenging and reliable noninvasive method for the assessment of endothelial function within a large range of normal and altered endothelium responses

    Increases in Waist Circumference and Weight As Predictors of Type 2 Diabetes in Individuals With Impaired Fasting Glucose: Influence of Baseline BMI: Data from the DESIR study

    Get PDF
    OBJECTIVE To evaluate in impaired fasting glucose (IFG) the relative importance of increases in waist circumference and weight on progression to type 2 diabetes. RESEARCH DESIGN AND METHODS The 9-year incidence of diabetes was studied in 979 men and women with baseline IFG, from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort. RESULTS Increases in both waist circumference and weight were significantly associated with diabetes incidence. Standardized odds ratios (95% CI) were 1.79 (1.45–2.21) and 1.86 (1.51–2.30), respectively, after controlling for baseline risk factors. The impact of waist circumference increase was greater for BMI <25 kg/m2 (2.40 [1.63–3.52]) than for BMI ≥25 kg/m2 (1.66 [1.28–2.16]) and persisted after adjusting for concurrent changes in either insulinemia or the homeostasis model assessment of insulin resistance index. Weight change had a similar impact in both BMI groups. CONCLUSIONS In individuals with IFG, it is important to monitor and prevent increases in waist circumference, in particular for those with BMI <25 kg/m2

    Liver Enzymes Are Associated With Hepatic Insulin Resistance, Insulin Secretion, and Glucagon Concentration in Healthy Men and Women

    Get PDF
    International audienceOBJECTIVE: The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. RESEARCH DESIGN AND METHODS: We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. RESULTS: In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). CONCLUSIONS: In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes

    The Type and the Position of HNF1A Mutation Modulate Age at Diagnosis of Diabetes in Patients with Maturity-Onset Diabetes of the Young (MODY)-3

    Get PDF
    OBJECTIVE—The clinical expression of maturity-onset diabetes of the young (MODY)-3 is highly variable. This may be due to environmental and/or genetic factors, including molecular characteristics of the hepatocyte nuclear factor 1-α (HNF1A) gene mutation. RESEARCH DESIGN AND METHODS—We analyzed the mutations identified in 356 unrelated MODY3 patients, including 118 novel mutations, and searched for correlations between the genotype and age at diagnosis of diabetes. RESULTS—Missense mutations prevailed in the dimerization and DNA-binding domains (74%), while truncating mutations were predominant in the transactivation domain (62%). The majority (83%) of the mutations were located in exons 1- 6, thus affecting the three HNF1A isoforms. Age at diagnosis of diabetes was lower in patients with truncating mutations than in those with missense mutations (18 vs. 22 years, P = 0.005). Missense mutations affecting the dimerization/DNA-binding domains were associated with a lower age at diagnosis than those affecting the transactivation domain (20 vs. 30 years, P = 10−4). Patients with missense mutations affecting the three isoforms were younger at diagnosis than those with missense mutations involving one or two isoforms (P = 0.03). CONCLUSIONS—These data show that part of the variability of the clinical expression in MODY3 patients may be explained by the type and the location of HNF1A mutations. These findings should be considered in studies for the search of additional modifier genetic factors

    The Clinical Variability of Maternally Inherited Diabetes and Deafness Is Associated with the Degree of Heteroplasmy in Blood Leukocytes

    Get PDF
    Context: Maternally inherited diabetes and deafness (MIDD) is a rare form of diabetes with a matrilineal transmission, sensorineural hearing loss, and macular pattern dystrophy due to an A to G transition at position 3243 of mitochondrial DNA (mtDNA) (m.3243A&gt;G). The phenotypic heterogeneity of MIDD may be the consequence of different levels of mutated mtDNA among mitochondria in a given tissue. Objective: The aim of the present study was thus to ascertain the correlation between the severity of the phenotype in patients with MIDD and the level of heteroplasmy in the blood leukocytes. Participants: The GEDIAM prospective multicenter register was initiated in 1995. Eighty-nine Europid patients from this register, with MIDD and the mtDNA 3243A&gt;G mutation, were included. Patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) or with mitochondrial diabetes related to other mutations or to deletions of mtDNA were excluded. Results: A significant negative correlation was found between levels of heteroplasmy and age of the patients at the time of sampling for molecular analysis, age at the diagnosis of diabetes, and body mass index. After adjustment for age at sampling for molecular study and gender, the correlation between heteroplasmy levels and age at the diagnosis of diabetes was no more significant. The two other correlations remained significant. A significant positive correlation between levels of heteroplasmy and HbA1c was also found and remained significant after adjustment for age at molecular sampling and gender. Conclusions: These results support the hypothesis that heteroplasmy levels are at least one of the determinants of the severity of the phenotype in MIDD. Heteroplasmy levels are at least one of the determinants of the severity of the phenotype of maternally inherited diabetes and deafness

    Gene Expression in Skeletal Muscle Biopsies from People with Type 2 Diabetes and Relatives: Differential Regulation of Insulin Signaling Pathways

    Get PDF
    BACKGROUND:Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS:We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE:We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced

    Mild Electrical Stimulation with Heat Shock Ameliorates Insulin Resistance via Enhanced Insulin Signaling

    Get PDF
    Low-intensity electrical current (or mild electrical stimulation; MES) influences signal transduction and activates phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Because insulin resistance is characterized by a marked reduction in insulin-stimulated PI3K-mediated activation of Akt, we asked whether MES could increase Akt phosphorylation and ameliorate insulin resistance. In addition, it was also previously reported that heat shock protein 72 (Hsp72) alleviates hyperglycemia. Thus, we applied MES in combination with heat shock (HS) to in vitro and in vivo models of insulin resistance. Here we show that 10-min treatment with MES at 5 V (0.1 ms pulse duration) together with HS at 42°C increased the phosphorylation of insulin signaling molecules such as insulin receptor substrate (IRS) and Akt in HepG2 cells maintained in high-glucose medium. MES (12 V)+mild HS treatment of high fat-fed mice also increased the phosphorylation of insulin receptor β subunit (IRβ) and Akt in mice liver. In high fat-fed mice and db/db mice, MES+HS treatment for 10 min applied twice a week for 12–15 weeks significantly decreased fasting blood glucose and insulin levels and improved insulin sensitivity. The treated mice showed significantly lower weight of visceral and subcutaneous fat, a markedly improved fatty liver and decreased size of adipocytes. Our findings indicated that the combination of MES and HS alleviated insulin resistance and improved fat metabolism in diabetes mouse models, in part, by enhancing the insulin signaling pathway

    A Bioinformatics Classifier and Database for Heme-Copper Oxygen Reductases

    Get PDF
    Background: Heme-copper oxygen reductases (HCOs) are the last enzymatic complexes of most aerobic respiratory chains, reducing dioxygen to water and translocating up to four protons across the inner mitochondrial membrane (eukaryotes) or cytoplasmatic membrane (prokaryotes). The number of completely sequenced genomes is expanding exponentially, and concomitantly, the number and taxonomic distribution of HCO sequences. These enzymes were initially classified into three different types being this classification recently challenged. Methodology:We reanalyzed the classification scheme and developed a new bioinformatics classifier for the HCO and Nitric oxide reductases (NOR), which we benchmark against a manually derived gold standard sequence set. It is able to classify any given sequence of subunit I from HCO and NOR with a global recall and precision both of 99.8%. We use this tool to classify this protein family in 552 completely sequenced genomes. Conclusions: We concluded that the new and broader data set supports three functional and evolutionary groups of HCOs. Homology between NORs and HCOs is shown and NORs closest relationship with C Type HCOs demonstrated. We established and made available a classification web tool and an integrated Heme-Copper Oxygen reductase and NOR protein database (www.evocell.org/hco)
    corecore