117 research outputs found

    Chandra/HETGS Observations of the Capella System: the Primary as a Dominating X-ray Source

    Get PDF
    Using the Chandra/High Energy Transmission Grating Spectrometer (hereafter HETGS) we have detected Doppler motion of Capella's X-ray emission lines in the 6 -- 25AA wave-band. The observed motion follows the expected orbital motion of Capella's primary. This finding implies that the primary G8 III star, not the secondary G1 III star in the Hertzsprung gap, has been the dominant source of hot 10^{6.8} -- 10^{7}K plasma at least in the last six years. In addition, the results demonstrate the long-term stability of the HETGS and demonstrate small uncertainties of 25 and 33 km/s in the velocity determination with the HEG and MEG, respectively.Comment: 4 pages, 4 figures, accepted by Astrophysical Journal Letter

    Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    Get PDF
    Most of the successful physical theories rely on the constancy of few fundamental quantities (such as the speed of light, cc, the fine-structure constant, \alpha, the proton to electron mass ratio, \mu, etc), and constraining the possible time variations of these fundamental quantities is an important step toward a complete physical theory. Time variation of \alpha can be accurately probed using absorption lines seen in the spectra of distant quasars. Here, we present the results of a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in \alpha derived from our analysis over the redshift range 0.4<z<2.3 is \Delta\alpha/\alpha = (-0.06+/-0.06) x 10^{-5}. The median redshift of our sample (z=1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3\sigma limit, -2.5 x 10^{-16} yr^-1 <(\Delta\alpha/\alpha\Delta t) <+1.2x10^{-16} yr^-1, for the time variation of \alpha, that forms the strongest constraint obtained based on high redshift quasar absorption line systems.Comment: uses revtex, 4 pages 3 figures. Accepted for publication in Physical Review Letter

    Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment

    Get PDF
    We carry out a covariant calculation of the measurable relativistic effects in an orbiting gyroscope experiment. The experiment, currently known as Gravity Probe B, compares the spin directions of an array of spinning gyroscopes with the optical axis of a telescope, all housed in a spacecraft that rolls about the optical axis. The spacecraft is steered so that the telescope always points toward a known guide star. We calculate the variation in the spin directions relative to readout loops rigidly fixed in the spacecraft, and express the variations in terms of quantities that can be measured, to sufficient accuracy, using an Earth-centered coordinate system. The measurable effects include the aberration of starlight, the geodetic precession caused by space curvature, the frame-dragging effect caused by the rotation of the Earth and the deflection of light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.

    A Planetary Mass Companion to the K0 Giant HD 17092

    Get PDF
    We report the discovery of a substellar-mass companion to the K0-giant HD 17092 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed 360-day periodicity with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of a planetary-mass body around the star. With the estimated stellar mass of 2.3Msun, the minimum mass of the planet is 4.6MJ. The planet's orbit is characterized by a mild eccentricity of e=0.17 and a semi-major axis of 1.3 AU. This is the tenth published detection of a planetary companion around a red giant star. Such discoveries add to our understanding of planet formation around intermediate-mass stars and they provide dynamical information on the evolution of planetary systems around post-main sequence stars.Comment: 13 pages, 3 figures, 2 tables. Submitted to Ap

    Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample

    Get PDF
    Development of fundamental physics relies on the constancy of various fundamental quantities such as the fine structure constant. Detecting or constraining the possible time variations of these fundamental physical quantities is an important step toward a complete understanding of basic physics. Here we present the results from a detailed many-multiplet analysis performed using high signal-to-noise ratio, high spectral resolution observations of 23 Mg II systems detected toward 18 QSOs in the redshift range 0.4<z<2.3 obtained using UVES at the VLT. We validate our procedure and define the selection criteria that will avoid possible systematics using detail analysis of simulated data set. We show our Voigt profile fitting code recovers the variation in \alpha very accurately when we use single component systems and multiple component systems that are not heavily blended. Spurious detections are frequently seen when we use heavily blended systems or the systems with very weak lines. Thus we avoided heavily blended systems and the systems with Fe II column density < 2x10^12 cm^-2 in the analysis. All steps involved in the analysis are presented in detail. The weighted mean value of the variation in \alpha obtained from our analysis over the redshift range 0.4<z<2.3 is {\Delta\alpha/\alpha} = (-0.06+/-0.06)x10^-5. The median redshift of our sample is 1.55 the 3\sigma upper limit on the time variation of α\alpha is -2.5x10^-16 yr^-1< (\Delta\alpha/\alpha\Delta t) <+1.2x10^-16 yr^-1. To our knowledge this is the strongest constraint from quasar absorption line studies till date.Comment: 23 pages; A&A style, 15 figures, accepte

    A Planet in a 0.6-AU Orbit Around the K0 Giant HD 102272

    Full text link
    We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With the estimated stellar mass of 1.9M⊙_\odot, the minimum mass of the confirmed planet is 5.9MJ_J. The planet's orbit is characterized by a small but nonzero eccentricity of ee=0.05 and the semi-major axis of 0.61 AU, which makes it the most compact one discovered so far around GK-giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet formation processes and stellar evolution. The currently available evidence for another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.Comment: 10 pages, 5 figure

    Revisiting the He II to H I ratio in the Intergalactic Medium

    Get PDF
    We estimate the He II to H I column density ratio, \eta = N(He II)/N(H I), in the intergalactic medium towards the high redshift (z_{em} = 2.885) bright quasar QSO HE 2347-4342 using Voigt-profile fitting of the H I transitions in the Lyman series and the He II Lyman-α\alpha transition as observed by the FUSE satellite. In agreement with previous studies, we find that η>50\eta > 50 in most of the Lyman-α\alpha forest except in four regions where it is much smaller (η∌10−20\eta \sim 10-20) and therefore inconsistent with photo-ionization by the UV background flux. We detect O VI and C IV absorption lines associated with two of these regions (zabsz_{\rm abs} = 2.6346 and 2.6498). We show that if we constrain the fit of the H I and/or He II absorption profiles with the presence of metal components, we can accommodate η\eta values in the range 15-100 in these systems assuming broadening is intermediate between pure thermal and pure turbulent. While simple photo-ionization models reproduce the observed N(O VI)/N(C IV) ratio, they fail to produce low η\eta values contrary to models with high temperature (i.e T ≄105\ge 10^5 K). The Doppler parameters measured for different species suggest a multiphase nature of the absorbing regions. Therefore, if low η\eta values were to be confirmed, we would favor a multi-phase model in which most of the gas is at high temperature (>> 105^5 K) but the metals and in particular C IV are due to lower temperature (∌\sim few 10410^4 K) photo-ionized gas.Comment: Accepted for publication in the MNRAS (11 pages, 9 figures, 2 tables

    Fortnightly Fluctuations in the O-C Diagram of CS 1246

    Get PDF
    Dominated by a single, large-amplitude pulsation mode, the rapidly-pulsating hot subdwarf B star CS 1246 is a prime candidate for a long-term O-C diagram study. We collected nearly 400 hours of photometry with the PROMPT telescopes over a time span of 14 months to begin looking for secular variations in the pulse timings. Interestingly, the O-C diagram is dominated by a strong sinusoidal pattern with a period of 14.1 days and an amplitude of 10.7 light-seconds. Underneath this sine wave is a secular trend implying a decrease in the 371.7-s pulsational period of Pdot = -1.9 x 10^-11, which we attribute to the evolution of the star through the H-R diagram. The sinusoidal variation could be produced by the presence of a low-mass companion, with m sin i ~ 0.12 Msun, orbiting the subdwarf B star at a distance of 20 Rsun. An analysis of the combined light curve reveals the presence of a low-amplitude first harmonic to the main pulsation mode.Comment: Accepted for publication in MNRAS. 11 pages, 8 figures, 5 table

    The First Extrasolar Planet Discovered with a New Generation High Throughput Doppler Instrument

    Get PDF
    We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4±2.063.4\pm2.0 m s−1^{-1} and a period of 4.11 days. The planetary minimum mass (msin⁥im \sin i) is 0.488±0.0150.488\pm0.015 MJM_J.Comment: 42 pages, 11 figures and 5 tables, Accepted for publication in Ap

    Design and Construction of Absorption Cells for Precision Radial Velocities in the K Band using Methane Isotopologues

    Get PDF
    We present a method to optimize absorption cells for precise wavelength calibration in the near-infrared. We apply it to design and optimize methane isotopologue cells for precision radial velocity measurements in the K band. We also describe the construction and installation of two such cells for the CSHELL spectrograph at NASA's IRTF. We have obtained their high-resolution laboratory spectra, which we can then use in precision radial velocity measurements and which can also have other applications. In terms of obtainable RV precision methane should out-perform other proposed cells, such as the ammonia cell (14^{14}NH3_{3}) recently demonstrated on CRIRES/VLT. The laboratory spectra of Ammonia and the Methane cells show strong absorption features in the H band that could also be exploited for precision Doppler measurements. We present spectra and preliminary radial velocity measurements obtained during our first-light run. These initial results show that a precision down to 20-30 m s−1^{-1} can be obtained using a wavelength interval of only 5 nm in the K band and S/N∌\sim150. This supports the prediction that a precision down to a few m s−1^{-1} can be achieved on late M dwarfs using the new generation of NIR spectrographs, thus enabling the detection of terrestrial planets in their habitable zones. Doppler measurements in the NIR can also be used to mitigate the radial velocity jitter due to stellar activity enabling more efficient surveys on young active stars.Comment: accepted PASP, Apr 2012 (in press). Preprint version with 36 pages, 9 Figures, 2 Table
    • 

    corecore