We carry out a covariant calculation of the measurable relativistic effects
in an orbiting gyroscope experiment. The experiment, currently known as Gravity
Probe B, compares the spin directions of an array of spinning gyroscopes with
the optical axis of a telescope, all housed in a spacecraft that rolls about
the optical axis. The spacecraft is steered so that the telescope always points
toward a known guide star. We calculate the variation in the spin directions
relative to readout loops rigidly fixed in the spacecraft, and express the
variations in terms of quantities that can be measured, to sufficient accuracy,
using an Earth-centered coordinate system. The measurable effects include the
aberration of starlight, the geodetic precession caused by space curvature, the
frame-dragging effect caused by the rotation of the Earth and the deflection of
light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.