1,578 research outputs found

    Mapping the moral compass : the relationships between in-house lawyers' role, professional orientations, team cultures, organisational pressures, ethical infrastructure and ethical inclination

    Get PDF
    This is a survey of 400 in-house lawyers working in public, third and commercial sectors. We set out here the findings at the highest level. A number of organisations assisted with the distribution of the survey. This report provides a unique profile of real differences within the in-house community. We examine individual and team orientations to the in-house role; the invocation of professional principles; and ethical infrastructure, ethical pressure and relationships with the employer. We relate these to externally validated indicators of ethical inclination: (i) moral attentiveness (the extent to which people deal with problems as moral problems and the extent to which people identify moral problems); and (ii) moral disengagement (the extent to which people are inclined to morally disengage to behave unethically without feeling distress). It is as rich a picture of what it means to be an ethical inhouse lawyer as has ever been attempted. A more detailed summary and discussion of our findings is found in the final chapter of the main report for those who would like to know more but do not have the appetite or time to read the whole report. Through this research we profile the characteristics of individuals, teams and environments most associated with a stronger or weaker inclination to behave ethically. It is important to emphasise that this mapping of the 'moral compass' of in-house lawyers shows that ethicality is associated with individual and professional notions of the in-house role but also with team orientations and the broader organisational environment. Ethicality is both a systemic and individual phenomenon. We think the systemic lesson is important: there is too much emphasis in legal circles on thinking that ethics is about being the right sort of individual. That kind of thinking is complacent and dangerous. As we show here, individuals, systems and cultures mesh together in meaningful and measurable ways to increase or reduce ethical risk. As numerous corporate scandals have shown, such ethical risk puts individual lawyers at risk of professional misconduct but it also encourages poor quality decision-making for the organisations that employ in-house lawyers: short-termism and sharp practice can lead to catastrophic error

    Pilot Trials of STAR Target to Range Glycemic Control

    Get PDF
    ESICM 2011 programme is available in files INTRODUCTION. Tight glycemic control (TGC) has shown benefits in cardiac surgery ICU patients. STAR (Stochastic TARgeted) is a flexible, model-based TGC protocol accounting for patient variability with a stochastically derived maximum 5% risk of blood glucose (BG) below 90 mg/dL. OBJECTIVES. To assess the safety, efficacy and clinical workload of the STAR TGC controller in pilot trials

    Enhanced insulin sensitivity variability in the first 3 days of ICU stay: implications for tight glycemic control

    Get PDF
    Effective tight glycemic control (TGC) can improve outcomes, particularly in cardiovascular surgery, but is difficult to achieve. Variability in insulin sensitivity/resistance resulting from the level and evolution of stress response, particularly early in a patient’s stay, can lead to hyperglycemia and variability, which are associated with mortality. This study quantifies the daily evolution of the variability of insulin sensitivity for cardiovascular surgical and all other ICU patients

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    Comparing HARPS and Kepler surveys: The alignment of multiple-planet systems

    Full text link
    Aims. We study a subset of the planetary population characterized both by HARPS and Kepler surveys. We compare the statistical properties of planets in systems with m.sin i >5-10 M_Earth and R>2 R_Earth. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods. We considered the frequency of systems with one, two and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radii distributions (corrected from detection bias) to model planetary systems in a simple yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions and isotropic) and compared the transit frequencies with one, two or three planets with those measured by Kepler. Results. The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For m.sin i cutoffs of 7-10 M_Earth, which are those expected to correspond to the radius cutoff of 2 R_Earth, we conclude that the results are better described by a Rayleigh distribution with mode of 1 deg or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with mode of 5 deg if we assume a rather extreme mass-radius relationship for the planetary population. Conclusions. These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges (abridged).Comment: 10 pages, 6 figures, 4 tables, accepted for publication in Astronomy & Astrophysic

    Safety and efficacy of antenatal milk expressing for women with diabetes in pregnancy: protocol for a randomised controlled trial

    Get PDF
    Many maternity providers recommend that women with diabetes in pregnancy express and store breast milk in late pregnancy so breast milk is available after birth, given (1) infants of these women are at increased risk of hypoglycaemia in the first 24 h of life; and (2) the delay in lactogenesis II compared with women without diabetes that increases their infant\u27s risk of receiving infant formula. The Diabetes and Antenatal Milk Expressing (DAME) trial will establish whether advising women with diabetes in pregnancy (pre-existing or gestational) to express breast milk from 36 weeks gestation increases the proportion of infants who require admission to special or neonatal intensive care units (SCN/NICU) compared with infants of women receiving standard care. Secondary outcomes include birth gestation, breastfeeding outcomes and economic impact

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Gravitational Couplings of Intrinsic Spin

    Get PDF
    The gravitational couplings of intrinsic spin are briefly reviewed. A consequence of the Dirac equation in the exterior gravitational field of a rotating mass is considered in detail, namely, the difference in the energy of a spin-1/2 particle polarized vertically up and down near the surface of a rotating body is Ωsinθ\hbar\Omega\sin\theta. Here θ\theta is the latitude and Ω=2GJ/(c2R3)\Omega = 2GJ/(c^2 R^3), where JJ and RR are, respectively, the angular momentum and radius of the body. It seems that this relativistic quantum gravitational effect could be measurable in the foreseeable future.Comment: LaTeX file, no figures, 16 page

    CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis

    Get PDF
    BACKGROUND AND AIMS: Fatty acid translocase CD36 (CD36) is a membrane protein with multiple immuno-metabolic functions. Palmitoylation has been suggested to regulate the distribution and functions of CD36, but little is known about its significance in NASH. METHODS: Human liver tissue samples were obtained from patients undergoing liver biopsy for diagnostic purposes. CD36 knockout mice were injected with lentivirus vectors to express wild type CD36 and palmitoylation sites mutated CD36 in the livers. Liver histology, immunofluorescence, mRNA expression profile, subcellular distributions and functions of CD36 protein were assessed. RESULTS: The localization of CD36 on the plasma membrane of hepatocytes was markedly increased in patients with NASH compared to patients with normal liver and those with simple steatosis. Increased CD36 palmitoylation and increased localization of CD36 on the plasma membrane of hepatocytes were also observed in livers of mice with NASH. Furthermore, inhibition of CD36 palmitoylation protected mice from developing NASH. The absence of palmitoylation decreased CD36 protein hydrophobicity reducing its localization on the plasma membrane as well as in lipid raft of hepatocytes. Consequently, a lack of palmitoylation decreased fatty acid uptake and CD36/Fyn/Lyn complex in HepG2 cells. Inhibition of CD36 palmitoylation not only ameliorated intracellular lipid accumulation via activating the AMPK pathway, but also inhibited inflammatory response through the inhibition of the JNK signaling pathway. CONCLUSIONS: Our findings demonstrate the key role of palmitoylation in regulating CD36 distributions and its functions in NASH. Inhibition of CD36 palmitoylation may represent an effective therapeutic strategy in patients with NASH. LAY SUMMARY: Fatty acid translocase CD36 (CD36) is a multifunctional membrane protein which contributes to the development of liver steatosis. In the present study, we demonstrated that the localization of CD36 on the plasma membrane of hepatocytes is increased in patients with NASH. Blocking the palmitoylation of CD36 reduces CD36 distribution in hepatocytes plasma membrane and protects mice from NASH. The inhibition of CD36 palmitoylation not only improved fatty acid metabolic disorders but also reduced the inflammatory response in vitro and in vivo. The present study suggests that CD36 palmitoylation is important for NASH development and inhibition of CD36 palmitoylation could be used to cure NASH
    corecore