232 research outputs found

    Successful Bronchoscopic Cryorecanalization in a Case of Endobronchial Lipoma

    Get PDF
    Endobronchial lipomas are rare benign tumors; less than 150 cases have been reported so far. Bronchial occlusion usually leads to a misdiagnosis of asthma/COPD or malignancy. We report the case of a 67-year-old man with a history of heavy smoking (100 pack years), dyspnea on exertion, cough, and malaise who was treated for pneumonia for three weeks. Due to nonresolving atelectasis of the superior segment of the right lower lobe, a malignant endobronchial tumor was suspected. Rigid bronchoscopy with cryorecanalization led to both the definite histopathological diagnosis of endobronchial lipoma and the reopening of an endoluminal airway obstruction during one procedure

    In Vitro Evaluation of Non-Protein Adsorbing Breast Cancer Theranostics Based on 19F-Polymer Containing Nanoparticles

    Get PDF
    Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self-assembly of either linear or star-shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non-toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX-NPs into breast cancer cells, and in vitro 19F-MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F-MRI

    Cost effective assay choice for rare disease study designs

    Get PDF
    High throughput assays tend to be expensive per subject. Often studies are limited not so much by the number of subjects available as by assay costs, making assay choice a critical issue. We have developed a framework for assay choice that maximises the number of true disease causing mechanisms ‘seen’, given limited resources. Although straightforward, some of the ramifications of our methodology run counter to received wisdom on study design. We illustrate our methodology with examples, and have built a website allowing calculation of quantities of interest to those designing rare disease studies.published_or_final_versio

    Fabry disease: recent advances in pathology, diagnosis, treatment and monitoring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Fabry disease (α-galactosidase A deficiency) accumulation of Globotriaosylceramide (Gb3) leads to progressive organ failure and premature death. The introduction of enzyme replacement therapy (ERT) was the beginning of a new era in this disorder, and has prompted a broad range of research activities. This review aims to summarize recent developments and progress with high impact for Fabry disease.</p> <p>Methods</p> <p>A Pubmed analysis was performed using the search terms "Fabry disease", "Anderson-Fabry disease", "alpha-galactosidase A" and "Gb3". Of the given publications by 31st January 2009 only original articles recently published in peer reviewed journals were included for this review. Case reports were included only when they comprised a new aspect. In addition we included relevant conference abstracts when the results had not already been published as original articles.</p> <p>Results</p> <p>Apart from Gb3-accumulation cellular and organ specific damages may be related also to inflammatory and immunological consequences. It will be interesting whether this may lead to new therapeutic strategies in the treatment of Fabry disease. Since newborn screening is still difficult in Fabry disease, detection of patients in populations at risk is of great importance. Undiagnosed patients with Fabry disease may still be found in cohorts of subjects with renal diseases, cardiomyopathy and TIA or stroke. Efforts should be undertaken to identify these individuals and initialise ERT in order to hault disease progression. It has also been demonstrated that Gb3-accumulation leads to pre-clinical damages and it is believed that early treatment may be the only possibility so far to prevent irreversible organ damage.</p

    So what do we really mean when we say that systems biology is holistic?

    Get PDF
    Background: An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context. Results: Inter-theoretic reductionism in the strict sense envisaged by its creators from the 1930s to the 1960s is largely impractical in biology, and was effectively abandoned by the early 1970s in favour of a more piecemeal approach using individual reductive explanations. Classical holism was a stillborn theory of the 1920s, but the term survived in several fields as a loose umbrella designation for various kinds of anti-reductionism which often differ markedly. Several of these different anti-reductionisms are on display in the holistic rhetoric of the recent systems biology literature. This debate also coincides with a time when interesting arguments are being proposed within the philosophy of biology for a new kind of reductionism. Conclusions: Engaging more deeply with these issues should sharpen our ideas concerning the philosophy of systems biology and its future best methodology. As with previous decisive moments in the history of biology, only those theories that immediately suggest relatively easy experiments will be winners

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life
    corecore