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Abstract

High throughput assays tend to be expensive per subject. Often studies are limited not so much by the number of
subjects available as by assay costs, making assay choice a critical issue. We have developed a framework for assay
choice that maximises the number of true disease causing mechanisms ‘seen’, given limited resources. Although
straightforward, some of the ramifications of our methodology run counter to received wisdom on study design.
We illustrate our methodology with examples, and have built a website allowing calculation of quantities of interest
to those designing rare disease studies.
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Introduction
New technologies such as Next Generation Sequencing
(NGS) have opened up new approaches for investigating
the genetic aetiology of heritable diseases. For instance,
a popular study design is whole genome or whole exome
sequencing (WGS/WES) of affected offspring and their
unaffected parents in order to identify de novo mutations
and rare variants that could be potential risk factors for
the disease. This has allowed investigation of diseases
not previously amenable to genetic analyses due to their
rarity, small family size and/or locus heterogeneity. For
diseases following one of the classic Mendelian inherit-
ance patterns, relatively small numbers of pedigrees are
usually sufficient to reduce the number of candidate mu-
tations to a manageable number [1]. Some combinations
of mutations are sufficiently rare in unaffected individuals
that their occurrence even in a single affected individual
can provide evidence linking a gene to a disease. For in-
stance, in whole genome sequencing of a Dutch population
sample of 250 trios, only three rare loss of function
compound heterozygous events were observed [2]. Such
strategies have been used for both rare diseases and
common multifactorial diseases, often with great success.
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Approximately 182 novel disease causing genes were found
in the three years from 2009–12, predominantly using NGS
in various small pedigree study designs [1]. Of the esti-
mated 7,000 rare severe disorders, approximately half
have now had risk genes identified for them. A caveat
to this is that there is evidence that many reported
pathogenic variants are in fact false positives [2,3].
Less commonly reported are the failures. Although

some of these failures may be due to bad luck (e.g. un-
even capture or coverage) or poor practice, many prob-
ably result from the aetiology of the disease under study
being resistant to dissection by a particular study design.
Matching of study design to disease aetiology is critical
for a project’s success, but very difficult given that the
aetiology is largely unknown. Other features that make
study design difficult are the number and variety of as-
says available, and the typically high per subject cost of
these assays. Researchers of rare diseases on constrained
budgets may be limited not so much by the availability
of disease cases as by assay costs. A choice has to be
made on the most effective strategy; whether to spend
the money on assaying a few individuals deeply or to
spread the resources out shallow assaying more subjects.
In this paper we lay down a framework for determining
that strategy. Although straightforward, the results may
run counter to received wisdom on study design.
Let us say we want to investigate the aetiology of a

rare oligogenic disease. We may presume the heritability
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of the disease has already been justified e.g. in the appli-
cation for funding to conduct the study. We can assume
the disease is caused by a small number of causal genetic
mutations/polymorphisms of large effect size in each
case. However it is likely that there is little overlap in
those risk mutations across cases, especially if the dis-
ease is phenotypically heterogeneous. Take Waardenburg
syndrome (WS) as an example. This neurocristopathy
(Neural Crest Cell disorder [4]) is characterised by the as-
sociation of hearing loss with pigmentation abnormalities.
Other abnormalities occurring in subsets of WS cases
have given rise to its classification into sub-types. Six WS
risk genes interact with each other in a melanocyte devel-
opment related network. Although the risk genes associate
with different subtypes of WS, there is much overlap re-
garding which genes cause which sub-types. There is also
a lot of phenotypic heterogeneity within subtypes and in-
complete penetrance within affected families. A few
hundred point mutations have been identified in these
WS associated genes based of their being predicted
gene disruptive, most of these are private [5].
Using NGS or similar technologies to assay individual

genomes it is typically possible to construct for any
given case several plausible disease causing mechanisms,
consistent with family history, conservation, predictions
of mutation disruptiveness, etc. By disease causing mech-
anism we mean something very analogous to Rothman’s
‘sufficient cause’, i.e. a set of risk factors, none of which are
sufficient in themselves to cause the disease, but which
jointly guarantee that it will arise [6]. In our case the com-
ponent causes are a set of mutations. The true causal
mechanism for an individual will only be likely to be
amongst the set of plausible candidate mechanisms if all
the mutations that contribute to that mechanism have
been observed via the assay(s) performed on the individ-
ual. Following construction of a set of candidate mecha-
nisms for each of our cases, we can then look for
commonality in these candidates across cases. It may be
that a particular gene features in at least one of the candi-
date mechanisms of each case. That would make the gene
a prime candidate for further investigation. Similarly there
may be enrichment for genes involved in a particular func-
tion, a function that may be already implicated with the
disease. For instance, there may be enrichment for insulin
related genes, and having a diabetic mother may be a
known disease risk factor. After identifying candidate dis-
ease mechanisms via a high throughput assay one would
typically want to validate them via more precise assays,
e.g. Sanger sequencing for genotype validation. Follow-
up functional studies would be needed to validate any
putative disease mechanisms identified.
High throughput assays may also be used in a clin-

ical setting for the diagnosis of rare disease cases and
for genetic counselling purposes. The costs/benefits of
genetic testing for clinical purposes depend on many
factors. One framework for evaluating their usefulness
is the analytic validity, clinical validity, clinical utility
and ethical, legal and social issues (ACCE) framework
[7]. However here we are concerned with the efficient
use of assays for research purposes in which case only
the analytical validity of the assays is relevant.

Methodology
Here we present methodology relevant to assay choice
for two rare disease study scenarios. We have built a
website implementing most of this methodology [8].

Scenario 1: Assay choice for a new study
Typically the cost of high throughput assays is high
and the funding available limited. Researchers may
have many more cases available than they can afford
to assay. The question addressed here is what is the
most informative way to assay disease cases given a
fixed budget, and an effectively unlimited number of
cases?
We assume no overlap in the causal mutations across

cases. Given this, the probability of the disease mechan-
ism for a case being discoverable from a particular gen-
etic assay on the individual is

d ¼ vc ð1Þ
where

� d = probability that all the relevant risk mutations
for a particular case have been observed in the
assays conducted on them

� v = hit rate = probability that a risk mutation for the
disease will lie within the assayed loci

� c = complexity = the number of risk mutations
needed to cause disease

Equation (1) is actually an approximation. It would be
exact if all cases had exactly c causal mutations. For rare
diseases the proportion of the cases that have more than
c causal mutations is tiny and their effect on the value of
d can be neglected.
The number of cases in which a complete disease

mechanism has been observed will be binomially
distributed

m e Bin d; nð Þ ð2Þ

where

� n = number of cases assayed
� m = number of cases in which the complete

disease mechanism has been observed, and hence
is discoverable
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The expected number of cases in which a complete
disease mechanism has been observed is given by

E m½ � ¼ nd

Substituting equation (1) into this gives

E m½ � ¼ nvc ð3Þ
In order to evaluate several alternative assays one

needs to specify n, c and v for each assay and then calcu-
late E[m] for each assay.
The cost effectiveness (utility) of a particular assay is

given by

U ¼ E m½ �=nP ¼ vc=P ð4Þ
where

� P is the price per subject for the assay

We can see how assay utility relates to price and hit
rate by setting the utility of two assays equal and re-
arranging thus

P2

P1
¼ v2

v1

� �c
ð5Þ

All of the above also applies to any set of assays con-
sidered as a single assay. For instance we could calculate
the utility of a combination of WES and chip genotyping
via equation (4).
In summary, the researcher is probably going to want

to use the most cost effective assay on their cases (eqn.
(4)), as this should maximise the number of completely
observed disease causing mechanisms that can be seen
for a fixed budget. Equation (3) gives the expectation of
that number.

Example 1
This is best illustrated by way of an example, and for
that we will draw on our experience of a study of Caudal
Regression Syndrome (CRS). CRS is a rare (1 in 10,000
births) congenital disorder characterized by abnormal
development of the lower spine [9]. It is phenotypically
heterogeneous; muscle hypotrophy resulting from lack
of innervation may occur, as well as malformation of the
pelvis and legs. Some CRS associated anomalies are seen
in related clinical disorders, such as Currarino Syndrome
[10] and VACTERL [11]. As with many congenital disor-
ders, having a diabetic mother is a major risk factor for
CRS. However the relative risk for CRS (=252) is the
highest for all such disorders [12]. The underlying gen-
etic basis of sporadic CRS is largely unknown [9,13,14].
We recently obtained funding to exome sequence four

(n = 4) sporadic CRS cases and their unaffected parents.
If we assumed
� Two risk mutations are needed to cause the disease,
c = 2

� The hit rate provided by exome sequencing of a
quarter, v = 0.27

then

E m½ � ¼ nvc ¼ 4 0:27ð Þ2 ¼ 0:29

Alternatively we could have spent the money on geno-
typing the trios via a whole-genome genotyping micro-
array in order to look for rare and de novo Copy
Number Variants (CNVs) (due to their popularity in
Genomewide Association Studies such microarrays are
often referred to as a GWAS chips). Let us assume

� the hit rate provided by CNVs detected though
GWAS chip genotyping is v = 0.12

� GWAS chip genotyping is a quarter of the price of
exome sequencing

○ If so we can afford to chip genotype four times
as many trios as we can afford to exome sequence,
i.e. n = 4 × 4 = 16
then

E m½ � ¼ nvc ¼ 16 0:12ð Þ2 ¼ 0:23

So for this study, given the chosen parameter values,
exome sequencing is 26% better (0.29/0.23 = 1.26) than
CNV calling via GWAS chip genotyping.
The Example 1 estimates and conclusion depend on

the hit rates of the two assays. How human genetic vari-
ation is split between point mutations and structural
changes is now quite well characterised [15]. Although
fewer in number, CNVs account for more genetic vari-
ation between individuals than point mutations. Less
well understood is the functional impact on disease of
the various mutation classes. It has been estimated that
CNVs cause transcript differences in 3% and coding dif-
ferences in 1% of genes [15]. The mutation rate of CNVs
[16] and point mutations [17] are such that the number
of bases affected per generation via CNVs is far higher
than via point mutations. Also given these mutation
rates there are disproportionately fewer CNVs than point
mutations implying stronger purifying selection against
CNVs. Purifying selection is also suggested by a paucity
of (i) common CNVs in genes, (ii) overlapping CNVs in
genes, and (iii) deletion CNVs in genes and enhancers
[15]. On this basis CNVs probably have larger effect
sizes on traits than point mutations. We have based
our estimation of the hit rate for chip genotyping for
CNVs, WES and WGS assays on diagnosis rates for se-
vere intellectual disability obtained from these assays
[18]. One in 200 new born suffer severe intellectual
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disability (IQ < 50), and a large number of genes have
been implicated. A cohort of cases were subjected to
genetic testing, after each assay an attempt was made
to identify a genetic cause. First they were 250 K chip
genotyped for CNVs. then exome sequenced for rare
point mutations, then assayed via WGS. The diagnos-
tic rates derived for these three assays are respectively
12%, 27% and 62%. These diagnoses where predomin-
antly based on de novo mutations and some X linked,
very few where autosomal recessive [18,19]. So we can
assume a disease complexity of 1 approximately ap-
plies, and so take these diagnosis rates as lower limits
for the hit rates of the respective assays.

Scenario 2: The most effective way to extend an
existing study
Another scenario in which researchers commonly find
themselves, is revisiting some completed study such as the
above, in order to consolidate their findings, or search for
new features. If this is the case, what would be the most
effective way to extend the study? Two strategies present
themselves

� A – apply the previously used assay to additional
cases

� B – apply an additional assay to the existing dataset

Regardless of which strategy is used the result is an
augmented dataset. The analysis of the initial study
complicates the analysis of the augmented dataset, se-
quential analysis is the field of statistics addressing
this problem.
The effect of these two strategies on the parameters is

as follows

� Strategy A - increases n to nA, all other variables
retain their original value

� Strategy B - increases v to vB, all other variables
retain their original value

The effectiveness of the two strategies A and B can be
evaluated via equation (3) and are respectively

E mA½ � ¼ nAvc

E mB½ � ¼ nvBc
ð6Þ

The highest value, E[mA] or E[mB], determines the
most favourable strategy.
It is also of interest to see how these strategies relate

to each other. We can do this by considering the condi-
tion for which the two strategies are equivalent in terms
of the expected number of completely observed disease
mechanisms, i.e.
E mA½ � ¼ E mB½ �
Substituting expressions (6) into the above and simpli-

fying, reduces the equality to

nA
n

¼ vB
v

� �c
ð7Þ

Again we assume there is a limited budget, this time
for extending the study, and that the amount available is
the same regardless of the strategy chosen. If so then

nA−nð ÞPA ¼ nPB

where

� PA, PB are the price per subject of the assays used in
strategies A and B respectively

This can be combined with (3) to give the conditions
under which the two strategies are equivalent, this is

vB
v
¼ PB

PA
þ 1

� �1=c
ð8Þ

Further obvious constraints apply, e.g. vB ≤ 1. Thus the
strategy favoured depends on the disease’s complexity
and the assays’ relative prices and hit rates, and is inde-
pendent of sample size.
This can be rearranged to give

ΔvB ¼ v
PB

PA
þ 1

� �1=c
−1

" #
ð9Þ

and

v ¼ ΔvB=
PB

PA
þ 1

� �1=c
−1

" #
ð10Þ

where

� ΔvB ¼ vB−v , is the minimum extra hit rate that
strategy B has to confer in order to match strategy
A in cost effectiveness.

In summary, the choice between strategies can be eval-
uated by seeing which of the equations in (2) gives the
higher value. Equation (4) allows partitioning of the par-
ameter space according to whether strategy A or B is
more favourable. Equations (5) and (6), as will be seen in
the following example, also allow one to assess how
strongly one strategy is favoured over the other.

Example 2
Before discussing the implications of this let us return to
our CRS example. Let us compare exome sequencing of
another trio (strategy A), to GWAS chip genotyping for
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CNV detection of the extant trios (strategy B). We will
assume the same assay costs as in the previous example;
these two strategies are then equivalent in cost. Com-
plexity, and hit rate values we also take from the pre-
vious example.
Although not generally the case, we will assume no

overlap between the mutations detectable via the two as-
says, i.e. vB equals the sum of the hit rates for the two
assays. Although software exists for calling CNVs from
WES data, this is a difficult task due to the unevenness
of WES’s enrichment stage. In our CRS study we tried
calling CNVs by four different software programs
[20-23] but found no consistency between their results,
and concluded that CNVs cannot be reliably called using
WES data. Any one of the programs could have been
performing well but we cannot tell which. The only
WES data available to the programs was that of our
CRS dataset, it could be that given WES data on more
subjects the programs might have performed better. A
recent evaluation of such software drew similar con-
clusions [24].
Exome sequencing an additional trio increases the ex-

pected number of complete disease causing mechanisms to

E mA½ � ¼ nAv
c ¼ 5 0:27ð Þ2 ¼ 0:365

Whereas chip genotyping for CNV detection our exist-
ing 4 trios, gives

E mB½ � ¼ nvB
c ¼ 4 0:27þ 0:12ð Þ2 ¼ 0:61

Clearly, given assumptions, strategy B is the better
option.
Figure 1 Partitioning of the parameter space according to which stra
feasible region; dark grey - strategy B favoured, light grey - strategy A favo
dotted lines mark equivalence of the two strategies given disease complex
represents when the new assay of strategy B provides no new information
Also of interest is the breakeven point at which the
two strategies become equally effective. If we hold the
exome sequencing hit rate at 0.27 then the required ΔvB
as calculated by equation (5) is 0.032. Conversely equa-
tion (6) allows us to calculate the exome sequencing hit
rate required for strategy A to be as good as strategy B
(given ΔvB ¼ 0:12); that turns out to be v = 1.02, an im-
possibly high hit rate. So it seems clear that strategy B
(chip genotyping of the extant trios) is better than strat-
egy A (exome sequencing a 5th CRS trio). For strategy A
to even be equivalent we would need to assume an un-
realistically high hit rate for exome sequencing (1.02), or
unrealistically low hit rate for chip genotyping for CNV
detection (0.032). The partitioning of the parameter
space according to whether strategy A or B is more
favoured for example 2 is illustrated in Figure 1.
Discussion
Phenotypic variation arises from genetic and epigenetic
variation in a variety of ways. The most familiar mechan-
ism is that of a genetic mutation coding for a change in
the protein’s amino acid sequence, which alters the pro-
tein’s physical or chemical properties directly affecting
phenotype. Mutations acting in this way, known as non-
synonymous mutations, include missense mutations,
stop codon loss/gain, start codon gain, and frameshift
mutations. Relatively accurate predictions can be made
regarding how deleterious such mutations are because
the mechanism through which they act, namely transla-
tion (of codons into amino acid sequence), is well under-
stood. However much phenotypic variation seems driven
not by changes to protein amino acid sequence but by
tegy is favoured, in the Example 2 scenario. Grey represents the
ured, given a disease complexity of 2. Blue, red, green and black
ities of 1, 2, 4 and infinity respectively. The black dotted line also
.
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where and when and in what quantities proteins are
expressed, isoform ratios, protein folding, protein turn-
over and post translational modifications. In a survey of
151 GWAS papers reporting 531 SNP-trait associations,
43% were intergenic and 45% were intronic [25]. A glo-
bal analysis of the control of gene expression suggested
mRNA abundance explains 40% of the variation in pro-
tein levels [26]. Evidence that synonymous mutations
contribute to disease, and mechanisms by which they
may affect mRNA and protein levels, splicing and
folding is reviewed in [27]. The control of all this is
Byzantine and less well understood. Prediction of a gen-
etic mutation’s impact on most of these processes is in
its infancy. One way to overcome weakness in genetic
mutation impact prediction for non-translation pro-
cesses is through directly assaying other components of
the machinery. Assays of the epigenome can address
whether or not a region of the genome is being actively
transcribed. Assays of the transcriptome can look at the
quantities and sequence of mRNA and non-coding RNA
involved in protein expression. The proteins themselves
can be measured via mass spectrometry. These non-
genetic assays are not without their own problems.
Generally they are expensive, difficult to do, and often
have low coverage of the class assayed. They are also, to
varying degrees, dependent on the tissue type upon
which they are conducted. For many diseases, biopsy of
the most appropriate tissue is expensive or impractical.
Broadly speaking high throughput assays are based on

two technologies; microarray and NGS. NGS is costly
and analysis is computationally demanding, but all vari-
ants of a class can be assayed, including rare and de-
novo variants. Microarray is cheaper and simpler but the
variants assayed (usually a sample of the common vari-
ants) are predetermined, and de-novo variants are not
covered. Common variants are unlikely to be major risk
factors for rare disorders, but can act as modifiers of
progression and phenotype. CNVs are the one class of
rare and de-novo variation assayable using microarray
technology. CNVs greater than a certain size (measured
in terms of the number of consecutive assayed SNPs
spanned) can be reliably called from GWAS chip inten-
sity data. A feature of structural changes is that they can
generate effects at both the source and destination loci.
However CNVs identified via GWAS chip can only in-
form on the former. It is notable that several classes of
variation are not well covered by high-throughput as-
says. Most classes of DNA repeats are not well covered.
Another class not readily assayed are balanced structural
changes, i.e. inversions and translocations.
It is clear from equation (1) that high complexity in

the disease causation mechanism strongly favours using
assays with a higher hit rate. If high hit rate and low
sample size is desirable for complex diseases, one may
then wonder why GWA studies (shallow assays of large
numbers of cases and controls) have been so successful
for multifactorial diseases. The explanation is to be found
in a difference in underlying assumptions. In GWA studies
one is looking for commonality across cases in the genetic
mutation. An assumption of the study designs described
here is that there is no overlap in the causal mutations
across cases. Such commonality as there is across cases is
only sought after the identification of a set of candidate
disease causing mechanisms per case. Commonality
across cases may then be sought in features associated
with the candidate mechanisms, e.g. an implicated gene or
pathway.
A question on many researchers’ minds is whether

WGS is worth the considerable extra cost entailed. Our
framework goes some way towards allowing such an as-
sessment. An assay offering only a modestly increased
hit rate over much cheaper rivals may still be preferable
if the disease is complex enough. WGS is currently
about four times dearer than WES. Given this, if the hit
rate of WGS exceeded twice that of WES then it would
be preferable as long as disease complexity was two or
more. WGS can assay all variation assayed by WES and
chip genotyping. It can see CNVs not detectable by chip
genotyping. It can also detect inversions, translocations,
balanced insertions/deletions and other variants invisible
to the other assays. However it is hard to predict the
deleteriousness of intergenic variants especially point
mutations, and this reduces somewhat the apparent
advantage of WGS.
The values that come out of equation (3) for E[m]

are quite sobering. In our own CRS study we have at
least one quite plausible candidate mechanism per
case, whereas given Example 1 we should expect
E[m] = 0.27. The discrepancy could be due to (i) lots
of false positive disease causal mechanisms, (ii) the
value of v is really much higher (or c lower) than that
used in Example 1, and (iii) good luck; knowing the bi-
nomial distribution, equation (2), we can calculate
how lucky we would have had to be. If the probability
that all relevant risk mutations for a case have been
observed is low (low value of d), then we should have
less expectation of finding commonality across cases,
and should instead concentrate on evaluating/validat-
ing our plausible candidate mechanisms, via for in-
stance functional studies.
The framework we propose has several limitations.

We assume that complete observation of a disease caus-
ing mechanism is a prerequisite for its identification,
and provide a framework for maximising the number of
completely observed mechanisms in the study, by maxi-
mising E[m]. However the ultimate aim is not just to
have observed disease causing mechanisms but (i) to dis-
tinguish them from other plausible candidates, and/or
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(ii) to identify associating features (for instance an impli-
cated gene or pathway). The ability to do either depends
not only on maximising E[m] but also on minimising
the number of candidate disease causing mechanisms
per case.
We have not attempted to formally address this major

issue, but discuss it here. In Example 1 we compared E
[m] for different assays in a trio study. Using a singleton
case only rather than trio study design would have tre-
bled those E[m] estimates. However trio information al-
lows identification of de-novo, compound heterozygous,
and family history consistent events, and so reduces the
number, and improves the quality of the candidate dis-
ease causing mechanisms found. This advantage may
more than offset for the lower E[m]. Just as study design
may influence quality and quantity of candidate disease
causing mechanisms, so too may assay choice. For in-
stance WGS having higher coverage than WES should
have higher E[m], but predicting the deleteriousness of a
mutation is more difficult outside of genic regions, so
the candidate disease mechanism quality may be lower
for WGS than WES. If you think that CNVs (and not
point mutations) are the only intergenic mutations for
which you can have some confidence of major effects
then you may be tempted to use chip genotyping for
CNV detection as a cheaper alternative to WGS. Having
said that, more CNVs can be detected by WGS than
chip genotyping (see [18]), and translocations and inver-
sions can also be detected.
Error rate differs between assays and this may also

affect the number of candidate disease mechanisms
generated. It also changes the costs that need to be
considered. The cost of validating the candidate dis-
ease mechanisms an assay produces should be taken
into account when choosing between assays.
Disease aetiology has a major impact on the effective-

ness of a study design, however typically the aetiology
will be largely unknown to us. Study power is sensitive
to the complexity parameter c, a characteristic of the
disease. The number of plausible disease causing mech-
anisms that can be constructed per case, explodes ex-
ponentially with increasing c, with a commensurate
reduction in study power. Thus we may set complexity
to a low value, e.g. c = 2, on the basis that our study
would have no power for high levels of disease com-
plexity. A similar rationale lies behind the common
practice of disregarding common variants in rare dis-
ease aetiology research, namely doing so reduces the
number of candidate disease mechanisms generated.
Another limitation of our framework is its dependence

on parameter values. Disease complexity has already
been discussed. The difficulty in setting the hit rate for
any particular assay should be apparent from the exam-
ples. Although there is information relating to how
human genetic variation is split between the various
classes (e.g. point mutations, structural changes), less
well understood is how disease risk mutations are split
between the various classes of mutation. Despite this dif-
ficulty it is apparent from Example 2 that even given
poor parameter estimates it still seems possible to make
informed decisions about assay choice.
Despite its shortcomings our framework provides

some practical guidance as to the selection of assays
when looking for genetic risk factors for rare diseases. It
helps make explicit the relationships between many of
the variables involved. It also exposes where current
knowledge is lacking and points the way to future re-
search directions. The implications the framework gen-
erates bring to mind the Indian tale of the blind men
describing an elephant. It seems assaying of each class of
mutation/variation adds a dimension, aiding comprehen-
sion, and that deeply assaying a few individuals should
be more fruitful than the shallow assaying of many.
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