27 research outputs found

    Low-energy pi pi photoproduction off nuclei

    Get PDF
    In the present paper we investigate pi0 pi0 and pi(+/-)pi0 photoproduction off complex nuclei at incident beam energies of 400-460 MeV. Simulations of two pion photoproduction on protons and nuclei are performed by means of a semi-classical BUU transport model including a full coupled-channel treatment of the final state interactions. Elastic scattering of the final state pions with the nucleons in the surrounding nuclear medium is found to yield a downward shift of the pi pi invariant mass distribution. We show that the target mass dependence of the pi0 pi0 invariant mass spectrum as measured by the TAPS collaboration can be explained without introducing medium effects beyond absorption and quasi-elastic scattering of the final state particles. On the other hand, we find considerable discrepancies with the data in the pi(+/-)pi0 channel, which are not understood.Comment: 6 pages, 4 figure

    Attenuation of phi mesons in gamma A reactions

    Full text link
    We present a theoretical analysis of inclusive photoproduction of phi mesons in nuclei. In particular the dependence of the total phi meson yield on the target mass number is investigated. The calculations are done using the semi-classical BUU transport approach that combines the initial state interaction of the incoming photon with the coupled-channel dynamics of the final state particles. The conditions of the calculations are chosen such as to match the set up of a recent experiment performed at SPring8/Osaka. Whereas the observables prove to be rather sensitive to the phi self energy in the medium, the attribution of deviations from the standard scenario to a particular in-medium effect seems to be impossible.Comment: 6 pages, 4 figure

    Hadrons in Nuclei -- from High (200 GeV) to Low (1 GeV) energies

    Full text link
    The study of the interaction of hadrons, produced by elementary probes in a nucleus, with the surrounding nuclear medium can give insight into two important questions. First, at high energies, the production process, the time-scales connected with it and the prehadronic interactions can be studied by using the nuclear radius as a length-scale. We do this here by analyzing data from the EMC and HERMES experiements on nuclear attenuation. Second, at low energies the spectral function, and thus the selfenergy of the produced hadron, can be studied. Specifically, we analyze the CBELSA/TAPS data on ω\omega production in nuclei and discuss the importance of understanding in-medium effects both on the primary production cross section and the final state branching ratio. In both of these studies an excellent control of the final state interactions is essential.Comment: Lecture given by U. Mosel at International School of Nuclear Physics: 29th Course: Quarks in Hadrons and Nuclei, Erice, Sicily, Italy, 16-24 Sep 200

    The spectral function of the omega meson in nuclear matter from a coupled-channel resonance model

    Full text link
    We calculate the spectral function of the omega meson in nuclear matter at zero temperature by means of the low-density theorem. The omega N forward scattering amplitude is calculated within a unitary coupled-channel effective Lagrangian model that has been applied successfully to the combined analysis of pion- and photon-induced reactions. While the peak of the omega spectral distribution is shifted only slightly, we find a considerable broadening of the omega meson due to resonance-hole excitations. For omega mesons at rest with respect to the surrounding nuclear medium, we find an additional width of about 60 MeV at saturation density.Comment: 26 pages, 10 figures, added short discussio

    On the background in the γpω(π0γ)p\gamma p \to \omega(\pi^0\gamma) p reaction and mixed event simulation

    Full text link
    In this paper we evaluate sources of background for the γpωp\gamma p \to \omega p, with the ω\omega detected through its π0γ\pi^0 \gamma decay channel, to compare with the experiment carried out at ELSA. We find background from γpπ0π0p\gamma p \to \pi^0 \pi^0 p followed by decay of a π0\pi^0 into two γ\gamma, recombining one π0\pi^0 and one γ\gamma, and from the γpπ0ηp\gamma p \to \pi^0 \eta p reaction with subsequent decay of the η\eta into two photons. This background accounts for the data at π0γ\pi^0 \gamma invariant masses beyond 700 MeV, but strength is missing at lower invariant masses which was attributed to photon misidentification events, which we simulate to get a good reproduction of the experimental background. Once this is done, we perform an event mixing simulation to reproduce the calculated background and we find that the method provides a good description of the background at low π0γ\pi^0 \gamma invariant masses but fakes the background at high invariant masses, making background events at low invariant masses, which are due to γ\gamma misidentification events, responsible for the background at high invariant masses which is due to the γpπ0π0p\gamma p \to \pi^0 \pi^0 p and γpπ0ηp\gamma p \to \pi^0 \eta p reactions.Comment: 10 pages, 5 figure

    ChemBank: a small-molecule screening and cheminformatics resource database

    Get PDF
    ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector

    Chiral dynamics of baryon resonances and hadrons in a nuclear medium

    Get PDF
    In these lectures I make an introduction to chiral unitary theory applied to the meson baryon interaction and show how several well known resonances are dynamically generated, and others are predicted. Two very recent experiments are analyzed, one of them showing the existence of two Λ(1405)\Lambda(1405) states and the other one providing support for the Λ(1520)\Lambda(1520) resonance as a quasibound state of Σ(1385)π\Sigma(1385) \pi. The use of chiral Lagrangians to account for the hadronic interaction at the elementary level introduces a new approach to deal with the modification of meson and baryon properties in a nuclear medium. Examples of it for Kˉ\bar{K}, η\eta and ϕ\phi modification in the nuclear medium are presented.Comment: Lectures given in the Workshop on Hadron Physics, Puri (India), march 200

    Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups.</p> <p>Results</p> <p>We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects.</p> <p>Conclusions</p> <p>The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.</p

    Charm and hidden charm scalar mesons in the nuclear medium

    Get PDF
    We study the renormalization of the properties of low lying charm and hidden charm scalar mesons in a nuclear medium, concretely of the D_{s0}(2317) and the theoretical hidden charm state X(3700). We find that for the D_{s0}(2317), with negligible width at zero density, the width becomes about 100 MeV at normal nuclear matter density, while in the case of the X(3700) the width becomes as large as 200 MeV. We discuss the origin of this new width and trace it to reactions occurring in the nucleus, while offering a guideline for future experiments testing these changes. We also show how those medium modifications will bring valuable information on the nature of the scalar resonances and the mechanisms of the interaction of D mesons with nucleons and nuclei

    A-dependence of phi-meson production in p+A collisions

    Full text link
    A systematic analysis of the A-dependence of phi-meson production in proton-nucleus collisions is presented. We apply different formalisms for the evaluation of the phi-meson distortion in nuclei and discuss the theoretical uncertainties of the data analysis. The corresponding results are compared to theoretical predictions. We also discuss the interpretation of the extracted results with respect to different observables and provide relations between frequently used definitions. The perspectives of future experiments are evaluated and estimates based on our systematical study are given.Comment: 14 pages, 8 figure
    corecore