2,756 research outputs found

    The Far-Infrared/Radio Correlation in Nearby Abell Clusters

    Get PDF
    A comprehensive study of the effect of the cluster environment on the far- infrared (FIR)/radio correlation in nearby Abell clusters is presented. Using the cluster radio galaxy database from Miller & Owen (2001) and optical spectroscopy and high resolution radio images to remove AGN, we assess the FIR/radio correlation of cluster galaxies from the centers of the clusters out well past the classical Abell radius. The FIR/radio correlation is shown to hold quite well for star forming galaxies, and the FIR and radio fluxes for cluster AGN are also well correlated. In the case of AGN, the relative radio- to-FIR fluxes are greater and the scatter in the correlation is larger than those seen for star forming galaxies. We also find that there is a rare but statistically significant excess of star forming galaxies with enhanced radio emission in the centers of the clusters, and that the degree of this enhancement is typically a factor of two or three. The FIR/radio correlation for cluster star forming galaxies is also tested against line-of-sight velocity relative to the cluster systemic velocities, but no significant correlation is found. While the radial dependence of the FIR/radio correlation is consistent with the model wherein ram pressure increases the cluster galaxies' magnetic field strengths through compression, the velocity data do not confirm this model. Although a contribution from ram pressure can not be ruled out, the thermal pressure due to the ICM alone is an equally viable alternative. The high resolution radio images largely reject the hypothesis that the increased radio emission arises from an AGN component, strengthening the claim that the change in the correlation is caused by a change in the environment of the galaxies.Comment: 26 pages, including 5 figures (uses AASTeX 5.0). Accepted for publication in the Astronomical Journa

    The X-ray Luminosity Function of Nearby Rich and Poor Clusters of Galaxies: A Cosmological Probe

    Get PDF
    In this letter, we present a new determination of the local (z<0.09) X-ray luminosity function (XLF) using a large, statistical sample of 294 Abell clusters and the ROSAT All-Sky-Survey. Given our large sample size, we have reduced errors by a factor of two for L(X)(0.5-2keV)>10^43 ergs/sec. We combine our data with previous work in order to explore possible constraints imposed by the shape of the XLF on cosmological models. A set of currently viable cosmologies is used to construct theoretical XLFs assuming Lx is proportional to M^p and a sigma_8-Omega_0 constraint (from Viana & Liddle 1996) based on the local X-ray temperature function. We fit these models to our observed XLF and verify that the simplest adiabatic, analytic scaling relation (e.g. Kaiser 1986) disagrees strongly with observations. If we assume that clusters can be described by the pre-heated, constant core-entropy models of Evrard & Henry (1991) then the observed XLF is consistent only with 0.1 < Omega_0 < 0.4 if the energy per unit mass in galaxies is roughly equal to the gas energy (ie if beta=1). (abridged)Comment: 4 pages, 2 figures, accepted for publication in ApJ Letters. uses emulateapj.st

    Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order

    Get PDF
    We calculate the imaginary parts of the isoscalar scalar and isovector electromagnetic form factors of the nucleon up to two-loop order in chiral perturbation theory. Particular attention is paid on the correct behavior of Im σN(t)\sigma_N(t) and Im GE,MV(t)G_{E,M}^V(t) at the two-pion threshold t0=4mπ2t_0=4 m_\pi^2 in connection with the non-relativistic 1/M-expansion. We recover the well-known strong enhancement near threshold originating from the nearby anomalous singularity at tc=4mπ2mπ4/M2=3.98mπ2t_c = 4m_\pi^2-m_\pi^4/M^2 = 3.98 m_\pi^2. In the case of the scalar spectral function Im σN(t)\sigma_N(t) one finds a significant improvement in comparison to the lowest order one-loop result. Higher order ππ\pi\pi-rescattering effects are however still necessary to close a remaining 20%-gap to the empirical scalar spectral function. The isovector electric and magnetic spectral functions Im GE,MV(t)G_{E,M}^V(t) get additionally enhanced near threshold by the two-pion-loop contributions. After supplementing their two-loop results by a phenomenological ρ\rho-meson exchange term one can reproduce the empirical isovector electric and magnetic spectral functions fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review

    Core flexibility of a truncated metazoan mitochondrial tRNA

    Get PDF
    Secondary and tertiary structures of tRNAs are remarkably preserved from bacteria to humans, the notable exception being the mitochondrial (m) tRNAs of metazoans, which often deviate substantially from the canonical cloverleaf (secondary) or ‘L’-shaped (tertiary) structure. Many metazoan mtRNAs lack either the TψC (T) or dihydrouridine (D) loops of the canonical cloverleaf, which are known to confer structural rigidity to the folded structure. Thus, the absence of canonical TψC–D interactions likely results in greater dispersion of anticodon-acceptor interstem angle than for canonical tRNAs. To test this hypothesis, we have assessed the dispersion of the anticodon-acceptor angle for bovine mtRNASer(AGY), which lacks the canonical D arm and is thus incapable of forming stabilizing interarm interactions. Using the method of transient electric birefringence (TEB), and by changing the helical torsion angle between a core mtRNA bend and a second bend of known angle/rigidity, we have demonstrated that the core of mtRNASer(AGY) has substantially greater flexibility than its well-characterized canonical counterpart, yeast cytoplasmic tRNAPhe. These results suggest that increased flexibility, in addition to a more open interstem angle, would allow both noncanonical and canonical mtRNAs to utilize the same protein synthetic apparatus

    Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

    No full text
    1. The rate of elongation and thickening of individual branches (shoots) varies across plant species. This variation is important for the outcome of competition and other plant-plant interactions. Here we compared rates of shoot growth across 44 species from tropical, warm temperate, and cool temperate forests of eastern Australia.2. Shoot growth rate was found to correlate with a suite of traits including the potential height of the species, xylem-specific conductivity, leaf size, leaf area per xylem cross-section, twig diameter (at 40 cm length), wood density and modulus of elasticity.3. Within this suite of traits, maximum plant height was the clearest correlate of growth rates, explaining 50 to 67% of the variation in growth overall (p p 4. Growth rates were not strongly correlated with leaf nitrogen or leaf mass per unit leaf area.5. Correlations between growth and maximum height arose both across latitude (47%, p p p p < 0.0001), reflecting intrinsic differences across species and sites

    Expression of the HPV16E7 Oncoprotein by Thymic Epithelium is Accompanied by Disrupted T Cell Maturation and a Failure of the Thymus to Involute with Age

    Get PDF
    Transgenic mice expressing the E7 protein of HPV16 from the keratin 14 promoter demonstrate increasing thymic hypertrophy with age. This hypertrophy is associated with increased absolute numbers of all thymocyte types, and with increased cortical and medullary cellularity. In the thymic medulla, increased compartmentalization of the major thymic stromal cell types and expansion of thymic epithelial cell population is observed. Neither an increased rate of immature thymocyte division nor a decreased rate of immature thymocyte death was able to account for the observed hypertrophy

    Broadband matched-field processing: coherent and incoherent approaches

    Get PDF
    Matched-field based methods always involve the comparison of the output of a physical model and the actual data. The method of comparison and the nature of the data varies according to the problem at hand, but the result becomes always largely conditioned by the accurateness of the physical model and the amount of data available. The usage of broadband methods has become a widely used approach to increase the amount of data and to stabilize the estimation process. Due to the difficulties to accurately predict the phase of the acoustic field the problem whether the information should be coherently or incoherently combined across frequency has been an open debate in the last years. This paper provides a data consistent model for the observed signal, formed by a deterministic channel structure multiplied by a perturbation random factor plus noise. The cross-frequency channel structure and the decorrelation of the perturbation random factor are shown to be the main causes of processor performance degradation. Different Bartlett processors, such as the incoherent processor [Baggeroer et al., J. Acoust. Soc. Am. 80, 571-587 (1988)], the coherent normalized processor [Z.-H. Michalopoulou, IEEE J. Ocean Eng. 21, 384-392 (1996)] and the matched-phase processor [Orris et al., J. Acoust. Soc. Am. 107, 2563-2375 (2000)], are reviewed and compared to the proposed cross-frequency incoherent processor. It is analytically shown that the proposed processor has the same performance as the matched-phase processor at the maximum of the ambiguity surface, without the need for estimating the phase terms and thus having an extremely low computational cost. (C) 2003 Acoustical Society of America

    Constraints on UV Absorption in the Intracluster Medium of Abell 1030

    Get PDF
    We present results from an extensive HST spectroscopic search for UV absorption lines in the spectrum of the quasar B2~1028+313, which is associated with the central dominant galaxy in the cluster Abell~1030 (z=0.178z=0.178). This is one of the brightest known UV continuum sources located in a cluster, and therefore provides an ideal opportunity to obtain stringent constraints on the column densities of any cool absorbing gas that may be associated with the intracluster medium (ICM). Our HST spectra were obtained with the FOS and GHRS, and provide continuous coverage at rest-frame wavelengths from 975\sim 975 to 4060~\AA, thereby allowing the investigation of many different elements and ionization levels. We utilize a new technique that involves simultaneous fitting of large numbers of different transitions for each species, thereby yielding more robust constraints on column densities than can be obtained from a single transition. This method yields upper limits of 10111013\lesssim 10^{11} - 10^{13} cm2^{-2} on the column densities of a wide range of molecular, atomic and ionized species that may be associated with the ICM. We also discuss a possible \Lya and C IV absorption system associated with the quasar. We discuss the implications of the upper limits on cool intracluster gas in the context of the physical properties of the ICM and its relationship to the quasar.Comment: Astrophysical Journal, in press, 19 pages, includes 5 PostScript figures. Latex format, uses aas2pp4.sty and epsfig.sty file
    corecore