172 research outputs found
Optical Coherence Tomography for Examination of Parchment Degradation
A novel application of Optical Coherence Tomography utilizing infrared light of 830 nm central wavelength for non invasive examination of the structure of parchment, some covered with iron gall ink, is presented. It is shown that both the parchment and the ink applied are sufficiently transparent to light of this wavelength. In the study, Spectral OCT (SOCT) as well as Polarisation Sensitive OCT (PS-OCT) techniques were used to obtain cross-sectional images of samples of parchment based on scattering properties. The second technique was additionally employed to recover the birefringence properties and the optical axis orientations of the sample. It was shown that freshly produced parchment exhibits a degree of birefringence. However, this property declines with ageing, and samples of old parchment completely depolarise the incident light
On the effects of hydrocarbon and sulphur-containing compounds on the CCN activation of combustion particles
International audienceThe European PartEmis project (''Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines'') was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. A comprehensive suite of aerosol, gas and chemi-ion measurements were conducted under different combustor operating conditions and fuel sulphur concentrations. Combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Modelling of CCN activation of combustion particles was conducted using microphysical and chemical properties obtained from the measurements as input data. Based on this unique data set, the role of sulphuric acid coatings on the combustion particles, formed in the cooling exhaust plume through either direct condensation of gaseous sulphuric acid or coagulation with volatile condensation particles nucleating from gaseous sulphuric acid, and the role of the organic fraction for the CCN activation of combustion particles was investigated. It was found that particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. Also the effect of the non-volatile OC fraction on the potential CCN activation is significant. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles
On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles
The European PartEmis project (Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines) was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. The combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Based on this extensive data set, the role of sulphuric acid coating and of the organic fraction of the combustion particles for the CCN activation was investigated. Modelling of CCN activation was conducted using microphysical and chemical properties obtained from the measurements as input data. Coating the combustion particles with water-soluble sulphuric acid, increases the potential CCN activation, or lowers the activation diameter, respectively. The adaptation of a Köhler model to the experimental data yielded coatings from 0.1 to 3 vol-% of water-soluble matter, which corresponds to an increase in the fraction of CCN-activated combustion particles from ≤10<sup>−4</sup> to ≌10<sup>−2</sup> at a water vapour saturation ratio S<sub>w</sub>=1.006. Additional particle coating by coagulation of combustion particles and aqueous sulphuric acid particles formed by nucleation further reduces the CCN activation diameter. In contrast, particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. The resulting reduction in the potential CCN activation with an increasing fraction of non-volatile OC becomes visible as a trend in the experimental data. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles
ECOC comparison exercise with identical thermal protocols after temperature offset correction - Instrument diagnostics by in-depth evaluation of operational parameters
© Author(s) 2015. A comparison exercise on thermal-optical elemental carbon/organic carbon (ECOC) analysers was carried out among 17 European laboratories. Contrary to previous comparison exercises, the 17 participants made use of an identical instrument set-up, after correcting for temperature offsets with the application of a recently developed temperature calibration kit (Sunset Laboratory Inc, OR, US). Temperature offsets reported by participants ranged from -93 to +100 °C per temperature step. Five filter samples and two sucrose solutions were analysed with both the EUSAAR2 and NIOSH870 thermal protocols. z scores were calculated for total carbon (TC); nine outliers and three stragglers were identified. Three outliers and eight stragglers were found for EC. Overall, the participants provided results between the warning levels with the exception of two laboratories that showed poor performance, the causes of which were identified and corrected through the course of the comparison exercise. The TC repeatability and reproducibility (expressed as relative standard deviations) were 11 and 15% for EUSAAR2 and 9.2 and 12% for NIOSH870; the standard deviations for EC were 15 and 20% for EUSAAR2 and 20 and 26% for NIOSH870. TC was in good agreement between the two protocols, TCNIOSH870 =0.98 à TCEUSAAR2 (R2 = 1.00, robust means). Transmittance (TOT) calculated EC for NIOSH870 was found to be 20% lower than for EUSAAR2, ECNIOSH870 = 0.80 à ECEUSAAR2 (R2 = 0.96, robust means). The thermograms and laser signal values were compared and similar peak patterns were observed per sample and protocol for most participants. Notable deviations from the typical patterns indicated either the absence or inaccurate application of the temperature calibration procedure and/or pre-oxidation during the inert phase of the analysis. Low or zero pyrolytic organic carbon (POC), as reported by a few participants, is suggested as an indicator of an instrument-specific pre-oxidation. A sample-specific pre-oxidation effect was observed for filter G, for all participants and both thermal protocols, indicating the presence of oxygen donors on the suspended particulate matter. POC (TOT) levels were lower for NIOSH870 than for EUSAAR2, which is related to the heating profile differences of the two thermal protocols
Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly â10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing
All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations
In ultra-high resolution (UHR-) optical coherence tomography (OCT) group velocity dispersion (GVD) must be corrected for in order to approach the theoretical resolution limit. One approach promises not only compensation, but complete annihilation of even order dispersion effects, and that at all sample depths. This approach has hitherto been demonstrated with an experimentally demanding âbalanced detectionâ configuration based on using two detectors. We demonstrate intensity correlation (IC) OCT using a conventional spectral domain (SD) UHR-OCT system with a single detector. IC-SD-OCT configurations exhibit cross term ghost images and a reduced axial range, half of that of conventional SD-OCT. We demonstrate that both shortcomings can be removed by applying a generic artefact reduction algorithm and using analytic interferograms. We show the superiority of IC-SD-OCT compared to conventional SD-OCT by showing how IC-SD-OCT is able to image spatial structures behind a strongly dispersive silicon wafer. Finally, we question the resolution enhancement of 2â? that IC-SD-OCT is often believed to have compared to SD-OCT. We show that this is simply the effect of squaring the reflectivity profile as a natural result of processing the product of two intensity spectra instead of a single spectrum
- âŠ