39 research outputs found

    Ammonium regeneration: Its contribution to phytoplankton nitrogen requirements in a eutrophic environment

    Get PDF
    Ammonium regeneration, nutrient uptake, bacterial activity and primary production were measured from March to August 1980 in Bedford Basin, Nova Scotia, Canada, a eutrophic environment. Rates of regeneration and nutrient uptake were determined using 15N isotope dilution and tracer methodology. Although primary production, nutrient uptake and ammonium regeneration were significantly intercorrelated, no relationship was detected between these parameters and heterotrophic activity. The average contribution of ammonium to total nitrogen (ammonium+nitrate) uptake was similar in the spring and in the summer (approximately 60%). On a seasonal average basis, 36% of the phytoplankton ammonium uptake could be supplied by rapid remineralization processes. In spite of the high average contribution of NH4 regeneration to phytoplankton ammonia uptake, there is indirect evidence suggesting that other NH4 sources may occasionally be important

    Krill Excretion Boosts Microbial Activity in the Southern Ocean

    Get PDF
    Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation

    Bacterial metabolism of algal extracellular carbon

    Full text link
    Measurements of microbial utilization of extracellular organic carbon (EOC) released by phytoplankton commonly consider only EOC fractions subject to rapid uptake. Questions remain whether other EOC fractions are metabolized, what portion is labile, and with what assimilation efficiency this carbon substrate is utilized. 14 C-EOC was prepared by incubation of the natural mixed planktonic community from an oligotrophic lake with H 14 CO 3 in the light. 14 C-EOC which was not rapidly removed by heterotrophs remained in solution and was isolated by filtration. This residual EOC was inoculated with lake microheterotrophs in laboratory microcosms, and utilization kinetics were determined through long-term assays of cumulative 14 CO 2 production. Time-courses for 14 CO 2 production were consistent for all assays and were well described by a deterministic mixed-order degradation model. On twelve sampling occasions, from 29% to 76% of residual 14 C-EOC was labile to further metabolism by lake heterotrophs. First-order rate constants for EOC utilization showed a mode of 0.05 to 0.15 per day. From 33% to 78% of gross 14 C-EOC uptake was respired (mean 50%), indicating appreciable return of algal EOC to the pelagic food web as microbial biomass.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42876/1/10750_2004_Article_BF00015524.pd

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs
    corecore