129 research outputs found

    Evaluation of short‐term safety of ultrasound‐guided foetal fluid sampling in the dog (Canis lupus familiaris)

    Get PDF
    Background: In humans, analysis of amniotic fluid is widely used for diagnostic and prognostic purposes. Amniocentesis has scarcely been used in veterinary medicine to date, despite a tremendous potential for clinical and research applications in dogs. Our study aimed to establish a safe method for foetal fluid sampling in female dogs. Methods: Two transabdominal ultrasound-guided methods were assessed: the "free hand" and the needle-guided bracket sampling. In addition, through a subsequent routinely scheduled ovariohysterectomy, fluid was directly collected. Samples from 98 conceptuses were collected at day 46.7 +/- 7.5 of pregnancy. Results: The amount of fluid retrieved varied between 0.5 and 5.0 ml per collection. Macroscopic examination of the uterus and conceptuses identified 53% of the puncture sites. Neither fluid leakage nor foetal injury was detected, and six hematomas (5.8%) were visible. Ultrasound-guided foetal fluid collection was found to be potentially safe, and it can be performed by using either transabdominal method. Conclusion: Foetal fluid collection is possible with relative ease and low short-term risk, and may open paths for diagnostic, therapeutic and research purposes in dogs. The procedure can provide new insights into prenatal clinical medicine, including diagnostics of foetal deaths, early identification of heritable diseases and so on

    In Vivo Evaluation of Cervical Stiffness Evolution during Induced Ripening Using Shear Wave Elastography, Histology and 2 Photon Excitation Microscopy: Insight from an Animal Model

    Get PDF
    Prematurity affects 11% of the births and is the main cause of infant mortality. On the opposite case, the failure of induction of parturition in the case of delayed spontaneous birth is associated with fetal suffering. Both conditions are associated with precocious and/or delayed cervical ripening. Quantitative and objective information about the temporal evolution of the cervical ripening may provide a complementary method to identify cases at risk of preterm delivery and to assess the likelihood of successful induction of labour. In this study, the cervical stiffness was measured in vivo in pregnant sheep by using Shear Wave Elastography (SWE). This technique assesses the stiffness of tissue through the measurement of shear waves speed (SWS). In the present study, 9 pregnant ewes were used. Cervical ripening was induced at 127 days of pregnancy (term: 145 days) by dexamethasone injection in 5 animals, while 4 animals were used as control. Elastographic images of the cervix were obtained by two independent operators every 4 hours during 24 hours after injection to monitor the cervical maturation induced by the dexamethasone. Based on the measurements of SWS during vaginal ultrasound examination, the stiffness in the second ring of the cervix was quantified over a circular region of interest of 5 mm diameter. SWS was found to decrease significantly in the first 4–8 hours after dexamethasone compared to controls, which was associated with cervical ripening induced by dexamethasone (from 1.779 m/s ± 0.548 m/s, p < 0.0005, to 1.291 m/s ± 0.516 m/s, p < 0.000). Consequently a drop in the cervical elasticity was quantified too (from 9.5 kPa ± 0.9 kPa, p < 0.0005, to 5.0 kPa ± 0.8 kPa, p < 0.000). Moreover, SWE measurements were highly reproducible between both operators at all times. Cervical ripening induced by dexamethasone was confirmed by the significant increase in maternal plasma Prostaglandin E2 (PGE2), as evidenced by the assay of its metabolite PGEM. Histological analyses and two-photon excitation microscopy, combining both Second Harmonic Generation (SHG) and Two-photon Fluorescence microscopy (2PF) contrasts, were used to investigate, at the microscopic scale, the structure of cervical tissue. Results show that both collagen and 2PF-active fibrillar structures could be closely related to the mechanical properties of cervical tissue that are perceptible in elastography. In conclusion, SWE may be a valuable method to objectively quantify the cervical stiffness and as a complementary diagnostic tool for preterm birth and for labour induction success

    Peri-conception and first trimester diet modifies reproductive development in bulls

    Get PDF
    Nutritional perturbation during gestation alters male reproductive development in rodents and sheep. In cattle both the developmental trajectory of the feto–placental unit and its response to dietary perturbations is dissimilar to that of these species. This study examined the effects of dietary protein perturbation during the peri-conception and first trimester periods upon reproductive development in bulls. Nulliparous heifers (n = 360) were individually fed a high- or low-protein diet (HPeri and LPeri) from 60 days before conception. From 24 until 98 days post conception, half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost) yielding four treatment groups in a 2 × 2 factorial design. A subset of male fetuses (n = 25) was excised at 98 days post conception and fetal testis development was assessed. Reproductive development of singleton male progeny (n = 40) was assessed until slaughter at 598 days of age, when adult testicular cytology was evaluated. Low peri-conception diet delayed reproductive development: sperm quality was lowered during pubertal development with a concomitant delay in reaching puberty. These effects were subsequent to lower FSH concentrations at 330 and 438 days of age. In the fetus, the low peri-conception diet increased the proportion of seminiferous tubules and decreased blood vessel area in the testis, whereas low first trimester diet increased blood vessel number in the adult testis. We conclude that maternal dietary protein perturbation during conception and early gestation may alter male testis development and delay puberty in bulls

    Uncoupled Embryonic and Extra-Embryonic Tissues Compromise Blastocyst Development after Somatic Cell Nuclear Transfer

    Get PDF
    Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way

    The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy

    Get PDF

    Contribution of large animals to translational research on prenatal programming of obesity and associated diseases

    No full text
    Background The awareness of factors causing obesity and associated disorders has grown up in the last years from genome to a more complicated concept (developmental programming) in which prenatal and early-postnatal conditions markedly modify the phenotype and homeostasis of the individuals and determine juvenile growth, life-time fitness/obesity and disease risks. Method Experimentation in human beings is impeded by ethical issues plus inherent high variability and confounding factors (genetics, lifestyle and socioeconomic heterogeneity) and preclinical studies in adequate translational animal models are therefore decisive. Most of the studies have been performed in rodents, whilst the use of large animals is scarce. Having in mind body-size, handlingeasiness and cost-efficiency, the main large animal species for use in biomedical research are rabbits, sheep and swine. The choice of the model depends on the research objectives. Aims To outline the main features of the use of rabbits, sheep and swine and their contributions as translational models in prenatal programming of obesity and associated disorders. © 2017 Bentham Science Publishers
    • 

    corecore