413 research outputs found

    The CoRoT star ID100866999: a hybrid gamma Doradus - delta Scuti star in an eclipsing binary system

    Full text link
    The presence of g- and p-modes allows testing stellar models from the core to the envelope. Moreover, binarity in an eclipsing system constrains the physical parameters of the pulsating star. CoRot ID 100866999 is a relatively large-amplitude hybrid gDor - dSct star with two clearly distinct frequency domains. The large number of detected frequencies allows a detailed study of the interaction between them. In addition, we can derive the fundamental parameters of both components from the study of the eclipsing light curve. After removing the eclipsing phases, we analyzed the data with the Period04 package up to S/N=4. The light curve was then prewhitened with these oscillation frequencies to derive the fundamental parameters of the two components. The eclipsing light curve analysis results in a (1.8+1.1)\,Mo system, both components being main sequence stars. We detect 124 frequencies related to luminosity variations of the primary. They are present in two well-separated domains: 89 frequencies in the interval [0.30;3.64]/d and 35 in the interval [14.57; 33.96]/d. There are 22 gDor frequencies separated by a constant period interval Delta P = 0.03493 d. These frequencies correspond to a series of g-modes of degree ell=1 with successive radial orders k. We identify 21 linear combinations between the first nine gDor frequencies. The dSct domain is dominated by a large-amplitude frequency F=16.9803 /d. The eight first gDor frequencies f_i are present with much lower amplitude in the delta Scuti domain as F +/- f_i. These interactions between g- and p-modes confirm the phenomenon we detected in another CoRoT star. The amplitude and the phase of the main frequency F shows a double-wave modulation along the orbital phase, giving rise to series of combination frequencies. Such combination frequencies are also detected, with lower amplitude, for the first gDor modes.Comment: Table 2 is available electronically from CD

    First Results of the EDELWEISS WIMP Search using a 320 g Heat-and-Ionization Ge Detector

    Full text link
    The EDELWEISS collaboration has performed a direct search for WIMP dark matter using a 320 g heat-and-ionization cryogenic Ge detector operated in a low-background environment in the Laboratoire Souterrain de Modane. No nuclear recoils are observed in the fiducial volume in the 30-200 keV energy range during an effective exposure of 4.53 kg.days. Limits for the cross-section for the spin-independent interaction of WIMPs and nucleons are set in the framework of the Minimal Supersymmetric Standard Model (MSSM). The central value of the signal reported by the experiment DAMA is excluded at 90% CL.Comment: 14 pages, Latex, 4 figures. Submitted to Phys. Lett.

    Spectroscopic Pulsational Frequency Identification and Mode Determination of Gamma Doradus Star HD135825

    Full text link
    We present the mode identification of frequencies found in spectroscopic observations of the Gamma Doradus star HD135825. Four frequencies were successfully identified: 1.3150 +/- 0.0003 1/d; 0.2902 +/- 0.0004 1/d; 1.4045 +/- 0.0005 1/d; and 1.8829 +/- 0.0005 1/d. These correspond to (l, m) modes of (1,1), (2,-2), (4,0) and (1,1) respectively. Additional frequencies were found but they were below the signal-to-noise limit of the Fourier spectrum and not suitable for mode identification. The rotational axis inclination and vsini of the star were determined to be 87 degrees (nearly edge-on) and 39.7 km/s (moderate for Gamma Doradus stars) respectively. A simultaneous fit of these four modes to the line profile variations in the data gives a reduced chi square of 12.7. We confirm, based on the frequencies found, that HD135825 is a bona fide Gamma Doradus star.Comment: Accepted to MNRAS 2012 March

    A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    Get PDF
    We present an improved version of the method of photometric mode identification of Heynderickx et al. (1994). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al.(2002). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our improved method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology).Comment: 10 pages, 9 figures Accepted for publication in Astronomy and Astrophysic

    gamma Doradus stars in the COROT exoplanets fields: first inspection

    Full text link
    We present here preliminary results concerning 32 stars identified as main gamma Doradus candidates by the COROT Variable Classifier (CVC) among the 4 first fields of the exoplanet CCDs.Comment: To appear in "Stellar Pulsation: Challenges for Theory and Observation", AI

    Strong interactions between g- and p-modes in the hybrid gamma Doradus-delta Scuti CoRoT star ID105733033

    Full text link
    CoRoT ID 105733033 is an excellent example of hybrid pulsators as it shows g- and p-modes with almost similar amplitudes in two clearly distinct frequency domains. Classical Fourier analysis allows the dectection of frequencies with an amplitude as small as 0.1 mmag up to 50c/d. The frequency spectrum of CoRoT ID 105733033 clearly consists of two distinct ranges, which are typical of gamma Doradus and delta Scuti pulsation. Focus was placed on the identification of linear combinations and frequencies due to the coupling between gamma Doradus and delta Scuti modes. We detect 198 gamma Doradus type frequencies in the range [0.25;4]c/d, of which 180 are not combination frequencies, and 24 of them are separated by a constant period-interval Delta P=0.03074d. According to the asymptotic theory, these 24 frequencies correspond to a series of g-modes of the same ell-degree and different radial orders n. We also detect 246 delta Scuti type frequencies in the range [10.1;63.4]c/d. The dominant frequency F=12.6759c/d was identified as the fundamental radial mode. Our most noteworthy result is that all the main gamma Doradus frequencies f_i are also detected in the delta Scuti domain as F +- f_i with four times smaller amplitudes. Once these frequencies were removed, only 59 can be considered as individual delta Scuti frequencies. A coupling between g- and p-modes is proposed to be a tool for detecting g-modes in the Sun, but this coupling has never yet been observed. Our present study may be valuable input to theoretical studies, addressing the mutual influence of g- and p-mode cavities and the deviation from classical theory. Furthermore, we identify a sequence of g-modes belonging to the same ell but with consecutive orders n

    HD 173977: An ellipsoidal d Scuti star variable

    No full text
    Astronomy and Astrophysics, v. 426, p. 247-252, 2004. http://dx.doi.org/10.1051/0004-6361:20034068International audienc

    Measurement of the response of heat-and-ionization germanium detectors to nuclear recoils

    Get PDF
    The heat quenching factor Q' (the ratio of the heat signals produced by nuclear and electron recoils of equal energy) of the heat-and-ionization germanium bolometers used by the EDELWEISS collaboration has been measured. It is explained how this factor affects the energy scale and the effective quenching factor observed in calibrations with neutron sources. This effective quenching effect is found to be equal to Q/Q', where Q is the quenching factor of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q' is combined with values of Q obtained from a review of all available measurements of this quantity in tagged neutron beam experiments. The systematic uncertainties associated with this method to evaluate Q' are discussed in detail. For recoil energies between 20 and 100 keV, the resulting heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the contributions from the Q and Q/Q' measurements, respectively. The present compilation of Q values and evaluation of Q' represent one of the most precise determinations of the absolute energy scale for any detector used in direct searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.

    Background discrimination capabilities of a heat and ionization germanium cryogenic detector

    Get PDF
    The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS Dark Matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions of low energy photons or electrons near the surface of the crystal, and is somewhat reduced by applying a higher charge-collecting inverse bias voltage (-6 V instead of -2 V) to the Ge diode. Despite this contamination, more than 98% of the background can be rejected while retaining 50% of the signal. This yields a conservative upper limit of 0.7 event.day^{-1}.kg^{-1}.keV^{-1}_{recoil} at 90% confidence level in the 15-45 keV recoil energy interval; the present sensitivity appears to be limited by the fast ambient neutrons. Upgrades in progress on the installation are summarized.Comment: Submitted to Astroparticle Physics, 14 page

    Event categories in the EDELWEISS WIMP search experiment

    Get PDF
    Four categories of events have been identified in the EDELWEISS-I dark matter experiment using germanium cryogenic detectors measuring simultaneously charge and heat signals. These categories of events are interpreted as electron and nuclear interactions occurring in the volume of the detector, and electron and nuclear interactions occurring close to the surface of the detectors(10-20 mu-m of the surface). We discuss the hypothesis that low energy surface nuclear recoils,which seem to have been unnoticed by previous WIMP searches, may provide an interpretation of the anomalous events recorded by the UKDMC and Saclay NaI experiments. The present analysis points to the necessity of taking into account surface nuclear and electron recoil interactions for a reliable estimate of background rejection factors.Comment: 11 pages, submitted to Phys. Lett.
    corecore