The heat quenching factor Q' (the ratio of the heat signals produced by
nuclear and electron recoils of equal energy) of the heat-and-ionization
germanium bolometers used by the EDELWEISS collaboration has been measured. It
is explained how this factor affects the energy scale and the effective
quenching factor observed in calibrations with neutron sources. This effective
quenching effect is found to be equal to Q/Q', where Q is the quenching factor
of the ionization yield. To measure Q', a precise EDELWEISS measurement of Q/Q'
is combined with values of Q obtained from a review of all available
measurements of this quantity in tagged neutron beam experiments. The
systematic uncertainties associated with this method to evaluate Q' are
discussed in detail. For recoil energies between 20 and 100 keV, the resulting
heat quenching factor is Q' = 0.91+-0.03+-0.04, where the two errors are the
contributions from the Q and Q/Q' measurements, respectively. The present
compilation of Q values and evaluation of Q' represent one of the most precise
determinations of the absolute energy scale for any detector used in direct
searches for dark matter.Comment: 28 pages, 7 figures. Submitted to Phys. Rev.