552 research outputs found

    Trajectory and spacecraft design for a pole-sitter mission

    Get PDF
    This paper provides a detailed mission analysis and systems design of a pole-sitter mission. It considers a spacecraft that is continuously above either the North or South Pole and, as such, can provide real-time, continuous and hemispherical coverage of the polar regions. Two different propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar electric propulsion and a far-term pole-sitter mission where the electric thruster is hybridized with a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. Optimal transfers from Earth to the pole-sitter are designed assuming Soyuz and Ariane 5 launch options, and a controller is shown to be able to maintain the trajectory under unexpected conditions such as injection errors. A detailed mass budget analysis allows for a trade-off between mission lifetime and payload mass capacity, and candidate payloads for a range of applications are investigated. It results that a payload of about 100 kg can operate for approximately 4 years with the solar-electric spacecraft, while the hybrid propulsion technology enables extending the missions up to 7 years. Transfers between north and south pole-sitter orbits are also considered to observe either pole when illuminated by the Sun

    Accelerating the convergence of path integral dynamics with a generalized Langevin equation

    Get PDF
    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasi-harmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water

    Nuclear quantum effects in solids using a colored-noise thermostat

    Full text link
    We present a method, based on a non-Markovian Langevin equation, to include quantum corrections to the classical dynamics of ions in a quasi-harmonic system. By properly fitting the correlation function of the noise, one can vary the fluctuations in positions and momenta as a function of the vibrational frequency, and fit them so as to reproduce the quantum-mechanical behavior, with minimal a priori knowledge of the details of the system. We discuss the application of the thermostat to diamond and to ice Ih. We find that results in agreement with path-integral molecular dynamics can be obtained using only a fraction of the computational effort.Comment: submitted for publicatio

    Nuclear quantum effects in ab initio dynamics: theory and experiments for lithium imide

    Full text link
    Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first principles calculations is challenging, because of the huge computational effort required by conventional techniques. Here we present the first ab-initio application of a recently-developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum mechanical property, thereby demonstrating that it is possible to improve the modelling of complex hydrogen-containing materials without additional computational effort

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.

    Natural Aging and Vacancy Trapping in Al-6xxx

    Full text link
    Undesirable natural aging (NA) in Al-6xxx delays subsequent artificial aging (AA) but the size, composition, and evolution of clustering are challenging to measure. Here, atomistic details of early-stage clustering in Al-1\%Mg-0.6\%Si during NA are studied computationally using a chemically-accurate neural-network potential. Feasible growth paths for the preferred β\beta'' precipitates identify: dominant clusters differing from β\beta'' motifs; spontaneous vacancy-interstitial formation creating 14-18 solute atom β\beta''-like motifs; and lower-energy clusters requiring chemical re-arrangement to form β\beta'' nuclei. Quasi-on-lattice kinetic Monte Carlo simulations reveal that 8-14 solute atom clusters form within 1000 s but that growth slows considerably due to vacancy trapping inside clusters, with trapping energies of 0.3-0.5 eV. These findings rationalize why cluster growth and alloy hardness saturate during NA, confirm the concept of ''vacancy prisons", and suggest why clusters must be dissolved during AA before formation of β\beta''. This atomistic understanding of NA may enable design of strategies to mitigate negative effects of NA

    Efficient stochastic thermostatting of path integral molecular dynamics

    Get PDF
    The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high-frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently-developed colored-noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nos\'e-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.Comment: Accepted for publication on JC

    Genetic variability of the ovine αs1-casein

    Get PDF
    The casein genetic polymorphisms are important for their effects on quantitative traits and technological properties of milk. At the αs1-casein (CSN1S1) level three genetic variants were characterised (A, C, D) in ovine milk (Ferranti et al., 1995)
    corecore